Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

(2020) 9:30
https://doi.org/10.1186/513677-020-00179-6

Journal of Cloud Computing:
Advances, Systems and Applications

RESEARCH Open Access

Two-level fuzzy-neural load distribution
strategy in cloud-based web system

Krzysztof Zatwarnicki

Check for
updates

Abstract

Cloud computing Web systems are today the most important part of the Web. Many companies transfer their
services to the cloud in order to avoid infrastructure aging and thus preventing less efficient computing.
Distribution of the load is a crucial problem in cloud computing systems. Due to the specifics of network traffic,
providing an acceptable time of access to the Web content is not trivial. The utilization of the load distribution with
adaptive intelligent distribution strategies can deliver the highest quality of service, short service time and reduce
the costs. In the article, a new, two-level, intelligent HTTP request distribution strategy is presented. In the process
of designing the architecture of the proposed solution, the results of earlier studies and experiments were taken
into account. The proposed decision system contains fuzzy-neural models yielding minimal service times in the
Web cloud. The article contains a description of the new solution and the test-bed. In the end, the results of the
experiments are discussed and conclusions and presented.

Keywords: Cloud computing, Fuzzy-neural modeling, Fuzzy-neural network, HTTP request distribution, Intelligent
system, Load balancing, Web cloud system, Web systems simulation

Introduction

Today cloud computing is essential in running most on-
line businesses and plays a very important role in IT. It
has opened new opportunities for providing large-scale
computing resources [1]. Cloud computing systems en-
able their clients to access a shared pool of computing
resources like servers, storage, applications and services
that can be dynamically configured and delivered on-
demand [2, 3]. This kind of organization of resources
improves the general performance, utilization of re-
sources, energy consumption management and helps to
avoid SLA (Service Level Agreement) violation [4]. To
achieve those kinds of goals load balancing mechanisms
are implemented. Those techniques are known and used
for decades in distributed systems like cluster and grid-
based systems. However, the proper (effective) distribu-
tion of the load is still an open problem in cloud com-
puting that needs new architecture structures and

Correspondence: kzatwarnicki@gmail.com
Institute of Computer Science, Opole University of Technology, Opole,
Poland

@ Springer Open

algorithms to meet new customer demands. Little com-
prehensive research about load balancing in the field of
cloud computing has been done.

Mainly in load balancing approaches, we can distin-
guish very simple techniques in which decisions are
taken very fast but the quality of decision is low. More
sophisticated algorithms taking in to account the state of
the controlled system and intelligent approaches offer
high quality of services.

The intelligent approaches can significantly improve
the utilization of resources and let to achieve aims re-
quired by administrators of the systems.

In the previous work [5-8] a research on intelligent
fuzzy-neural distribution methods minimizing service
time in cluster-based and cloud-based Web systems has
been presented. In the field of cloud systems, an effective
HTTP request distribution system using two-layer archi-
tecture, in which decisions were made on two independ-
ent levels by web switches learning mutual behavior has
been proposed [9, 10]. In this article, a novel HTTP re-
quest distribution method using one-layer architecture is
presented. The decision mechanism, being a key element

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00179-6&domain=pdf
http://orcid.org/0000-0001-6156-6030
http://creativecommons.org/licenses/by/4.0/
mailto:k.zatwarnicki@gmail.com

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

of the method, uses fuzzy-neuro techniques to make de-
cisions on two levels. On the first level, an algorithm is
choosing a group of web servers, while in the second
level, the next algorithm selects the specific server, out
of the chosen group, to service the HTTP request. The
presented solution is heuristic, uses intelligent and adap-
tive decision algorithms and is designed to minimize the
service time of HTTP requests in cloud-based Web
systems.

The rest of the article is composed as follows. In sec-
tion two the related work is presented with a description
of the previous, selected works constituting the basis for
a new solution. Section three contains a description of
the new HTTP distribution method. In section four the
test-bed and the results of experiments are discussed.
Section five summarizes the article.

Related work

Cloud computing, similarly to many other computer
technologies uses distributed systems to meet the very
high demand for computational power. To distribute
tasks and load among nodes in the system load balan-
cing methods are used [11]. Those methods help to im-
prove utilization of the resources, reduce the response
times and enable elastic scalability, which is an essential
part of the cloud computing [12, 13].

Load balancing mechanisms used in Web clouds can
be divided into three main categories [11, 14—17]: static,
dynamic and adaptive. In static load balancing assign-
ments are conducted with the use of deterministic or
probabilistic algorithms that do not take in to account
the current state of the system. Simple strategies have
been popular from the beginning of cluster-based Web
systems and they are still being improved. An example
of such a strategy is Round Robin, assigning incoming
HTTP requests to the subsequent servers. A slightly
more intelligent version taking into account the Web
server load was created by Xu Zongyu and Wang Xing-
xuan [18]. Stochastic strategies are also still developed
and become more and more sophisticated [4, 19, 20].

In a dynamic approach, the decisions are made on the
basis of the current state of the system. The most popu-
lar in AWS (Amazon Web Services) [21] dynamic load
balancing algorithm is Least Load, assigning HTTP re-
quests to the nodes with the least value of chosen load
measure.

The adaptive approach is the most complex one and
the decisions are not only made on the basis of the state
of the system but also the strategy can change when the
state of the system is changing [22]. Most of the adaptive
strategies are intelligent approaches. Many of the spe-
cialists claim that only this kind of strategy can effect-
ively provide an acceptable time of access to the Web
content in the conditions of typical Web traffic,

(2020) 9:30 Page 2 of 11

characterized by self-similarity and burstiness [23-26].
Among many artificial techniques used in intelligent
strategies, we can distinguish Ant Colony Optimization
(ACO) algorithm proposed by Kumar Nishant et al. [27],
in which generated ants traverse the width and length of
the cloud network in the way that they know about the
location of both the under-loaded and over-loaded
nodes. Another interesting HTTP request distribution
method using the natural phenomena-based strategies is
called Artificial Bee Colony (ABC) [25]. It uses a deci-
sion mechanism imitating the behavior of a bee colony.
Particle Swarm Optimization (PSO) strategy is another
solution based on heuristic algorithms and is designed
to schedule requests to individual components of the
cloud [28].

Artificial neural networks have been also used in adap-
tive load distribution systems [29-31]. A good example
of a solution taking into account the energy consump-
tion is presented in [32].

Another group of intelligent adaptive approaches,
using fuzzy-neural models, was proposed in the articles
of the author and the research group. Those are the so-
lutions enabling global distributions among server rooms
located in different geographical locations e.g. GARD [6]
and GARDIB [8] and local approaches like FARD [5]
and FNRD strategies [7]. All the systems work in this
way to minimize the response time for each HTTP re-
quest separately. In the latest work [9, 10], a proposal of
a two-layer architecture of the Web cloud was made. In
such a solution, the devices called Web switches are
making independent decisions on two layers. On the
first layer, a Web switch is distributing HTTP requests
among the availability zones - groups of servers located
in the same geographical location (a region) (Fig. 1.a).
On the second layer Web, switches are distributing re-
quests inside availability zones (simply zones). The ob-
tained results showed a much better performance for
the intelligent fuzzy-neural web switches than for non-
intelligent strategies. We compared also results of the
work of our intelligent FNRD Web switch in one-layer
architecture (Fig. 1.b) and two-layer architecture. In
one-layer architecture one Web switch was distributing
requests among all servers in the zones.

Results for two-layer architecture were surprisingly
much better than for one layer architecture.

Taking into account the results of the latest research,
a new distribution method and design of a new Web
switch for one-layer architecture are proposed in this
article. In the new method, all of the Web servers are di-
vided into groups, a separate mechanism in the Web
switch is choosing a group of servers and another mech-
anism chooses a server to service the request in the
group. The new strategy is called Two-Level Fuzzy-
Neural Request Distribution, or simply TLENRD.

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

(2020) 9:30 Page 3 of 11

Region
Web switch

Zone
Web
Switch

Zone #1

Zone #2

(a)

Zone #3

Region

RKELS

Zone #2

(b)

Fig. 1 Web cloud systems: a two-layer architecture, b one
layer architecture

Iy

Zone #3

Zone #1

The main difference between methods and algorithms
presented in the works [5-10] and the TLFENRD strategy
is that the previously proposed Web switches and bro-
kers make the distribution decision only on one level
(Fig. 2a). Those switches and brokers are estimating ser-
vice times using the fuzzy-neural mechanism for all ex-
ecutors servicing HTTP requests (e.g. Web servers or
availability zones). In the TLENRD strategy, Web switch
makes decisions on two levels (Fig. 2b). On each level,
separate fuzzy-neural mechanism estimates service times
for logical groups of servers (on the first level) and

First Decision Level

Fuzzy-Neural Decision Mechanism

Decision
(chosen executor)

(a)

First Decision Level

Fuzzy-Neural Decision Mechanism

Decision
(chosen group of executors)

Second Decision Level

Fuzzy-Neural Decision Mechanism

Decision
(chosen executor)

(b)

Fig. 2 Decision mechanisms: a one-level decision mechanism, b
two-level decision mechanism

servers itself (on the second level). In the proposed solu-
tion, neuro-fuzzy mechanisms on different levels can, in
some way, cooperate and learn mutual behaviors.

This article should help to answer if a two-level fuzzy-
neural distribution strategy TLENRD is better then a
simple one-level FNRD approach.

The detailed description of the new TLFENRD solution
is presented in the next section.

Two-level fuzzy-neural web switch
The main aim of the proposed Web switch is to distrib-
ute HTTP requests to minimize service time for each

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

request. Service times are measured from the moment
the Web switch sends a request to the chosen server to
the moment the Web switch receives the response. The
Web switch is processing requests in the order in which
they are received. Requests are not queued or scheduled.
In addition, all Web servers working in the cloud can
service all of the HTTP requests.

It should be noticed here that the design of the pre-
sented switch does not include all of the features of Web
switches used in practical applications. Due to the clarity
of the presentation, it lacks solutions connected with se-
curity, resistance to cyber-attacks, and failover system
used when the Web server or the Web switch fails itself.
However, the presented method of request distribution
fully enables the implementation of the indicated mecha-
nisms, and in particular, the design of the request distri-
bution algorithm supports the failover mechanism.

As mentioned above, the Web switch makes its deci-
sions on two logical levels. On the first level, a group of
servers is chosen. On the second level, a single server is
selected from the group.

The overall construction of the Web switch is pre-
sented in Fig. 3. The Web switch consists of the follow-
ing modules: the request analysis, group, server group,
redirection, and measurement modules.

The HTTP request is redirected in the following way
in the presented Web switch. At first, the request is clas-
sified. Request belonging to the same class have similar
service times. The group module chooses a group of
servers that can service the HTTP request in the short-
est time. The server group module, for which group was
chosen, selects the Web server for which the estimated
service time is the shortest. The redirection module
sends the HTTP request to the chosen server. After

(2020) 9:30 Page 4 of 11

servicing the request, the HTTP response is sent back by
the Web server to the Web switch and the Web switch
passes it to the client (due to clarity reasons this process
is not presented in Fig. 3). The measurement module
measures the real service time and sends it to the group
module and to the server group module, which was pre-
viously chosen. Both of the modules update information
about processing time in the cloud.

In the following subsections, the decision-making
process is described in detail.

Classification of http requests

The incoming HTTP request r; (where i is the index of
request and i=1, ..., I) is at the beginning assigned to a
class k; (k;e{l,...,K}) in the request analysis module.
The classification is made in this way to make requests
having a similar response time to belong to the same
class. Serviced HTTP requests should be constructed
properly according to the HT'TP protocol. In the system,
there are distinguished two types of HTTP requests:
static and dynamic. Static requests have responses deliv-
ered from the files (like HTML files, jpg, png, and other
picture files) placed on the Web server, and are classified
by their sizes. Dynamic requests have content generated
by the Web serve after the request arrival (by executing
scripts on the server like PHP, Python, Java or .Net Core,
e.t.c.), and are classified separately by its address. The ef-
fectiveness of this method of classification has been con-
firmed both in simulation experiments as well as in
research on a real cluster system [7, 33].

The FIRST decision level
The group module makes the decision on the first level.
It chooses a group of servers that will deliver the

Server
Group

Request
— i plAnalysis| -

Server z;

»| Module #1 i
Group :

Redirection

Module l,

Module

Group
Module

ML, 5} 4

; Module #g

A 4

Server

4

Group

A

MD;, §;

Module #G

Measurement
Module

Fig. 3 Design of the Web switch

ML, 3;

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

response. Dividing the servers into groups is not physical
but only logical.

The group module chooses this group of servers g;
(where g;€{l,...,G}), for which the estimated service
time is the shortest. The decision is made by taking into
account a load of groups of servers MD; = [MG!, ...,
MG, ..., MGY], where MG§ = [¢f,f¢], & and f¢ are
measures of the load on a server group g; at the moment
of arrival of i th request. Those measures were chosen
according to the experiments in [5, 7, 33]. The ef’ is the
overall number of requests being currently serviced by
the group of servers, and f% is the number of dynamic
requests serviced. The group module also adapts to the
changing environment by taking in to account a mea-
sured service time s; after the request service.

The information MD, and 5; are delivered by the meas-
urement module.

The construction of the group module is complex
and is similar to the construction of the server group
module. A detailed description of both of the mod-
ules and the overall working functionality is presented
in section 3.4.

The second decision level

There are as many server group modules as the number
G of groups of servers. Those modules constitute the
second decision level. The server group module chooses
the server z; to service the i th request. It is assumed that
all servers are general-purpose Web servers using the
same hardware and being able to service each HTTP re-
quest within the Web service.

In the Web switch only the g; th server group module,
chosen by the group module for the given request, is
making the decision. The construction and the action of
the server group module are exactly the same, as the
group module, and is described in section 3.4. The in-
puts for the module are a load of servers in the group
ML = [MS}, ..., MS3, ..., MS?], where MS? = [é&%, f7], Z
is the number of servers in the group, ¢/ and f7 are mea-
sures of the load on a server z and the meaning of them
is the same as for the group module. Also, the module is
adapting to the environment by taking into account the
measured service time §;, but only in the case when, one
of the Web servers of the group was servicing the i th
request.

The redirection module, with the use of TCP/IP
protocol stack in the operating system, redirects the
r; th request to the chosen Web server z;, The Web
switch also receives the response from the server and
sends it to that client, which sent the request (Fig.
1b). This process is not included in Fig. 3 because it
is not important for our considerations.

(2020) 9:30 Page 5 of 11

The measurement module collects information MD;,
ML}, ..., ML}, ...,ML? and $; necessary for other mod-
ules to make decisions. Because the Web switch sent the
HTTP requests to Web servers and receives HTTP re-
sponses it can measure the service time s; and the num-
ber of static and dynamic HTTP requests being serviced
by individual Web servers. Importantly, this module ac-
quires information available on the Web switch and does
not need to use other data sources.

The process of choosing an executor to service the
request

The group module and the server group module choose
the group of servers or a single server to service the
HTTP request. Both of the decision elements act in a
similar way and do not require information about the in-
ternal structure of the part of the system for which the
decision is taken. For this reason, the group module and
the server group are called in this section selection mod-
ule. Consequently, a group of servers or a single server
are called an executor.

Figure 4 presents the overall structure of the selection
module. The selection module contains a decision mod-
ule and as many executors models as the number of ex-
ecutors (a group of servers or Web servers) belonging to
the group.

Each of the executor models estimates service time for
executor it corresponds to and for the i th request be-
longing to the class k;. The estimation is done every time
a new HTTP request arrives before making the distribu-
tion decision on the basis of the information of the load
of the executor M = [}, f'] (which is equivalent to the
load MGf and MS? from the previous sections), where w
is an index of the executor, and w=1, ..., W. The execu-
tor model updates its information about the executor, by
taking into account the measured service time s;, only if
the executor model corresponds to the element of the
system that serviced the i th request.

The decision module chooses the executor d; for
which the estimated service time §; is the shortest, ac-
cording to

di= min{s : we{l,2,..., W}}. (1)

The key element of the system is the executor module
which estimates the service time for the given executor
and can adapt to the changing environment. It owes its
capabilities to the use of a fuzzy-neural mechanism. This
kind of construction of the executor was introduced and
described in detalil in [7].

The fuzzy structure of the system is based on the
Mamdani [34] model, while the neural approach permits
to change the parameters of input and output fuzzy sets.

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

(2020) 9:30 Page 6 of 11

M |

. ELECTION MODULE

—l—.“—_’ Executor S CTION MO !

E _L Model #1 . :

: Si !

ki | | o» §w . d

MY Executor | ') [K/?C('js'?n B

5.] ["| Model #w odule !

i o1y :

E W |

1 L .

W —_: Executor

M; Model #W

Fig. 4 Design of the selection- r-n;o-lu-le -- ‘

The overall structure of the executor module fuzzy-
neural network is presented in Fig. 5.a. The superscripts
indicating the executor’s number (w) have been omitted
in the figure as well as in the remainder of the article.

Inputs for the fuzzy-neural network are the parameters
of the load e, f; of the executor, while the output is the
estimated service time §;. Parameters of the model are
stored in the parameter database Z; = [Zy;, ..., Zi;, ---» ZKi,
where Zj; = [Cri, Dii» Sil, - Cii = [C1sis +-» Ciir -+ CLis] and
Dy = [digi> - Bk ---» Apri] are the input fuzzy set func-
tion parameters and Sy; = [S1ks .+ Sjkis - Sjia] are the out-
put fuzzy set function parameters. For each class k; of
the HTTP request, a different set of parameters is used
in the fuzzy system. In this way, there are K different
sets of parameters, and therefore, it can be said that
there are K different fuzzy-neural models.

The fuzzy set functions for inputs yp (e:), p, (f:), [=
1, .., Lym=1, ..., M, are triangular and the meaning of
their parameters ¢z, ..., Cjxir ---» Crii is presented on the
Fig. 5.b. Similar meaning have the parameters dy;, ...,
Apkis +-» Apri. The output fuzzy set functions pg(s) are
singletons, where the parameters sy4;, ..., Sjki» ..., S de-
note the positions of each singleton (Fig. 5.c).

The estimated service time is calculated in the follow-
ing way

Si= s e (€ f), (2)

where ptRi(e,',fi) = ﬂpe,(ei) "HE,, (f2)-

The process of adaptation is conducted every time the
executor, corresponding to the executor model, services
the request. Both the input and output fuzzy set parame-
ters are tuned with the use of the Back Propagation
Method [35] taking into account the measured service
time §;. Modification of the parameters is conducted in
the following way:

Sjk(i+1) = Sjki + 1 - (8i=8:) - pag (€is), (3)

Cpi(ir1) = Coki + 1c(Si=3;)

. ijwzl (ﬂ Ejm Ui)z; <s((Vn—l)«L+1)kiaﬂ Fy (ei)/acm)) ,
(4)
de(HI) = dyki + i’]d(g',‘—gi)

: Z,LZI (Mpe,(ez')zj,le (S((lfl)-M+m>ki9Mpﬁ”)/ 9dykt)> ;
(5)

where 7, 5., 44 are adaptation ratios, ¢ =1, ..., L -1, y =
1, .., M-117].

In the beginning, the values of the input parameters
Clkir «+or Clkir -+ Crxi @Nd diggy «oos Ayppis -.or Apgrs are evenly
distributed over the space of executor operation, while
the output parameters are set to zero. In this way, the
estimated service times are always close to zero for those
executors for which the decision system is not yet
learned. Over time, the Web switch adapts and the esti-
mated service times become longer and closer to the real
service times [7].

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

(2020) 9:30 Page 7 of 11

Parameter Database
Zz:[Zn, o L

vy Zki]

tr.(e) 4
L N AN

05 f--3--

4 R ,+1)S(/+1)

Cii Coki

5,8, S,

1 —_—_—— —_—

(b)

J

Siki Saki S3ki

RIS L
c
C ki eee Cnm
SJ
| -
TS
ki S ki

(©)

Fig. 5 Neuro-fuzzy model: (a) overall view, (b) input fuzzy sets functions, (c) output fuzzy sets functions

In the preliminary experiments, the optimal value of
the number of input fuzzy sets has been determined as
L =M =10, and the number of output fuzzy sets is equal
to/=L-M.

Experiments and discussion

Research and experiments which were conducted for
Web switches working in two-layer architecture showed
that the cooperation of intelligent switches can signifi-
cantly reduce the service time. In this section, it will be
determined whether the use of a single-layer architecture
with the two-level decision-making strategy TLENRD is

advantageous and better than the one-level intelligent
ENRD decision strategy.

To evaluate the proposed system, simulation experi-
ments have been conducted. The simulation program
was written in the OMNeT++ environment. The
OMNeT ++ provides appropriate libraries as well as the
environment for conducting simulation and is the most
popular system for evaluating networking systems [36].

The simulation program was divided into independent
modules that imitate the behavior of different parts of
the real system, namely: HTTP request generator, Web
switch, Web servers, and database server. The scheme of
the simulator is presented in Fig. 6.

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

(2020) 9:30 Page 8 of 11

Web
Switch

Fig. 6 The simulation model

Web server
T ol

SSD

DB
Server

J

To determine the values of the real system parameters,
which can be used in the simulation, preliminary experi-
ments have been conducted in a manner similar to that
in [37]. The experiments were conducted for Web server
with a computer equipped with Intel Core i7 7800X
CPU, a Samsung SSD 850 EVO driver and 32 GB of
RAM. The Apache Web server was running WordPress,
the most popular CMS system in the world which is
used on more than 25% of the world’s websites [38].
Thank that it was possible to simulate the behavior of
many real, business-oriented Websites.

The module of the request generator in the simulator
contained many submodules of clients, each of which
behaved like a real Web browser. To download a Web
page, they were downloading the first document with
HTML content, and then opening up to 6 TCP connec-
tions to fetch other elements of the page like css, js, pic-
tures and other files. The number of Web pages
downloaded by a single client during one session was
modeled according to the behavior of human beings
with the use of the Inverse Gaussian distribution (p=
3.86, A =9.46). The time between the opening of subse-
quent pages (the user think time) was modeled accord-
ing to the Pareto distribution (a=1.4, k=1) [39]. Each
client after finishing its session was deleted and a new
one was invoked.

Each of the clients was downloading a simulated Web
site. whose parameters (type and size of HTML and

nested objects) were exactly the same as those in the
very popular site https://www.sonymusic.com [40] run-
ning also on WordPress.

The Web switch in the simulator was able to distribute
HTTP requests with the use of strategies popular in
Amazon AWS [21] Web switches and with the use of in-
telligent strategies, namely:

e Round Robin (RR);

e Least Load (LL) — assigns HTTP requests to the
nodes with the lowest number of serviced HTTP
requests;

e DPartitioning (P) — assigns requests to servers
previously chosen for this kind of request. In the
experiments, a modification of the P algorithm was
used. It was more adaptive and behaving like LARD
algorithm [41], in which, if the server is overloaded
than the service of a given type of requests is moved
to the least loaded server;

e Fuzzy-Neural Request Distribution (FNRD) —
intelligent strategy using fuzzy-neural approach and
single-level decision algorithm [7];

e Two-Level Fuzzy-Neural Request Distribution
(TLENRD) — the new approach.

In order to properly evaluate the TLENRD and FNRD
strategy, the simulator should have implemented other
intelligent ~strategies known from the literature.

https://www.sonymusic.com/

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:30 Page 9 of 11

However, the implementation of those complex strat-
egies can be very time-consuming. Moreover, the strat- 16| e ripnRD
egies, in most cases, are not described in detail in the 14
articles and their implementation would not have fully
reflected the way of working and the intentions of the
authors. Therefore, it is almost impossible to compare
the best solutions today. In this article the work of

fuzzy-neural strategies is compared with the dynamic LL 05
strategy that is very good in practical solutions and is a .
kind of the reference line. -
The Web switch was modeled in the simulation as a o
single queue. The service times were measured on a real ’
server with Intel Xeon E5-2640 v3 processor and were umber of lients

(@)

as follow: LL 0.0103 us, RR 0.00625us, P 0.0101 ps,
ENRD 0.2061 ps, TLENRD 0.2033 ps. I

Each of the Web server modules contained a separate 11
queue modeling processor and SSD drive. Service times
were acquired for the server described above. The RAM o
memory acted as the cache memory for the file system.

The database server was modeled as a single queue.
The service times were measured for the same server as
the Web server was running. 0

The experiments have been conducted for four differ-
ent cloud systems containing: 8, 10, 12 and 14 Web
servers, and a single database server. The chosen num-
ber of servers was not the smallest one that can be found
in real solutions. Because of the nature of the two-level
decision system, it would be recommended to use bigger
Web clusters. o

During the experiments, the mean service time was = o7
measured and in each experiment different load, mea- £ os
sured as the number of generated clients, was used. Also o5
40 million of HTTP requests were served in every ex-
periment, the warming phase was taking about 10 mil-
lion requests and for 30 million the service time was
measured. 0

Before starting the experiments, it was necessary to de- :
cide how to logically divide the web servers into groups e
in the TLENRD strategy. Research presented in [9] for
two-layer architecture indicated that there should be
two servers in each group. Therefore, experiments have
been carried out for such settings.

The results of the experiment are presented in Fig. 7.
Each of the four diagrams presents the results for the
cloud system containing a different number of Web
servers.

In the real world, the end-users expect to get the con-
tent of the Web page as soon as it is possible. A signifi-
cant part of the time of delivering the content to the
user is the time of servicing HTTP requests. So it is cru-
cial to service the request quickly to keep the high qual- . o . . .

. . . . Fig. 7 Mean service time in load function (number of clients) in
ity of service even the ‘load of the Clo}ld S}{stem is high. Web cluster containing: (a) 8 Web servers, (b) 10 Web servers, (c) 12

The best results with short service times, for non- Web servers, (d) 14 Web servers

intelligent solutions, have been achieved for the LL

—a—FNRD

servicetime s

0,9

0,4

03

—e—TLFNRD

08 ——FNRD

0,7 —

06 ——RR

p

service time [s]
°

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

strategy. This strategy is simple, adaptive and very effect-
ive, especially in practical applications. Service times for
this strategy are significantly lower than for RR and P
approaches.

However, the results for both intelligent strategies
were much better than for non-intelligent ones. In all of
the experiments, service times for the new TLFNRD
strategy were shorter than for FNRD and, when the load
was increasing, the distance between the results was be-
coming significantly bigger.

In many of the experiments, service times for
TLENRD were two times lower than for LL strategy. In
consequence, to keep the same quality of service for the
TLENRD strategy as for LL, a lower number of servers is
necessary, and the maintenance costs are much lower.

It is also worth mentioning that in the simulation, the
time of making a decision was taken into account. Al-
though the decision times for the FNRD and the
TLENRD strategies are almost two orders of magnitude
higher than for other strategies, the Web switch was not
a bottleneck for the system in the experiments and ob-
tained overall service times were much shorter for intel-
ligent strategies.

Since the TLFENRD strategy uses information available
within the Web switch in the decision-making process,
the implementation of the proposed strategy would be
possible in presently used Web switches in the Web
cloud. The strategy can be used both in software and
hardware Web switches. It should be noticed, however,
that making decisions in the TLENRD strategy requires
more computing power than simple strategies like RR or
LL need. Therefore the TLENRD Web switch should
have adequate computing power.

Summing up the research results, it is clearly beneficial
to use the two-level intelligent, fuzzy-neuro, decision-
making strategy. Results for the one-level, fuzzy-neuro
strategy are worse. The proposed new method increases
the quality in the Web cloud systems and lowers the
costs. Further research on the new solution can deliver
information on its uses and features.

Summary
In this article, a new HTTP request distribution strategy
for cloud-based Web systems was presented. The pro-
posed TLENRD strategy is a new quality in the field of
load balancing strategies using the fuzzy-neuro ap-
proach. The new strategy uses a two-level decision sys-
tem in which, on the first level, a group of servers is
chosen to service the request, and on the second level, a
single Web server is selected. On each level, the fuzzy-
neural model estimates the service times for chosen
elements.

To evaluate the TLENRD strategy a simulation envir-
onment was designed and implemented. The simulator

(2020) 9:30 Page 10 of 11

was able to imitate correctly the behavior of Web clients,
as well as the work of Web switch and both the Web
and the database servers. In all of the experiments, intel-
ligent strategies get much better results than the non-
intelligent strategies used mostly in popular Web cloud
systems. The two-level TLENRD strategy resulted in
shorter service times than the one-level intelligent FNRD
strategy, especially when the load was high.

The research results indicate that the new solution is
important and further research into two-level decision-
making systems should be continued.

Abbreviations

ABC: Artificial Bee Colony; ACO: Ant Colony Optimization; AWS: Amazon Web
Services; GARD: Global Request Distribution; GARDIB: Global Request
Distribution with Broker; FARD: Fuzzy Adaptive Request Distribution;

FNRD: Fuzzy- Neural Request Distribution; HTTP: Hypertext Transfer Protocol;
LARD: Locality-Aware Request Distribution; LL: Least Load; P: Partitioning;
RAM: Random-Access Memory; RR: Round Robin; PSO: Particle Swarm
Optimization; SSD: Solid-State Drive; TLFNRD: Two-Level Fuzzy- Neural
Request Distribution

Acknowledgements
Not applicable.

Author’s contributions
KZ played the most important role in this paper. The author(s) read and
approved the final manuscript.

Authors’ information

Krzysztof Zatwarnicki is with the Institute of Computer Science at the Opole
University of Technology, Opole, Poland. He received Ph.D. in computer
science from Wroctaw University of Science and Technology in 2003 and
D.Sc. degrees in the same field from West Pomeranian University of
Technology Szczecin, Poland in 2013. Since 2013 serves as Head of the
research group at the Opole University of Technology. He has published
over 70 journal and conference papers in the areas of artificial intelligence,
computer networks, application of artificial intelligence in computer
networks, load distribution and sharing in a cluster and cloud-based Web
systems.

Funding
Not applicable.

Availability of data and materials

Because a code involves our interests, we're sorry but we can't publish
source code at present. However, they are available from the author on a
reasonable request.

Competing interests
The author declares that he has no conflict of interest.

Received: 24 February 2020 Accepted: 1 June 2020
Published online: 11 June 2020

References

1. Costello K, Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5
Percent in 2019, 2019. https;//www.gartner.com/en/newsroom/press-
releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g,
Accessed 09.06.2019

2. Lee BTG, Patt R, JeffVoas C. DRAFT Cloud Computing Synopsis and
Recommendations, 2011. http://csrc.nist.gov/publications/nistpubs/800-146/
sp800-146.pdf. Accessed 09.01.2020

3. Puthal D (2015) Cloud computing features, issues, and challenges: a big
picture, international conference on computational intelligence and
networks (CINE). IEEE Press, Bhubaneshwar, India, pp 116-123

https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

Zatwarnicki Journal of Cloud Computing: Advances, Systems and Applications

20.

22.

23.

24

25.

26.

Patiniotakis |, Verginadis Y, Mentzas G (2015) PulLSaR: preference-based
cloud service selection for cloud service brokers. J Internet Serv Appl 6.
https//doi.org/10.1186/513174-015-0042-4

Borzemski L, Zatwarnicki K (2003) A Fuzzy Adaptive Request Distribution
algorithm for cluster-based Web systems. Proceeding of 11th Euromicro
Conference on Parallel Distributed and Network based Processing. IEEE
Press, Genua

Borzemski L, Zatwarnicki K, Zatwarnicka A (2007) Adaptive and intelligent
request distribution for content delivery networks. Cybern Syst 38(8):837-
857

Zatwarnicki K (2012) Adaptive control of cluster-based web systems using
neuro-fuzzy models. Int J Appl Math Comput Sci 22(2):365-377
Zatwarnicki K (2011) Guaranteeing quality of Service in Globally Distributed
web System with brokers, proceedings of computational collective
intelligence technologies and applications: third international conference.
ICCCI 2011, vol 6923. Springer-Verlag, Gdynia, pp 374-384

Zatwarnicki K, Zatwarnicka (2019) A Cooperation of Neuro-Fuzzy and
Standard Cloud Web Brokers. In: Borzemski L, Swiatek J, Wilimowska Z (eds)
Information Systems Architecture and Technology: Proceedings of 40th
Anniversary International Conference on Information Systems Architecture
and Technology - ISAT 2019. ISAT 2019. Advances in Intelligent Systems
and Computing, vol 201. Springer, Cham, p 1050 243-254

Zatwarnicki K, Zatwarnicka A (2019) A Comparison of Request Distribution
Strategies Used in One and Two Layer Architectures of Web Cloud Systems.
In: proc. Computer Networks. CN 2019. Communications in Computer and
Information Science, vol 1039. Springer, Cham, pp 178-190

Alakeel A (2010) A guide to dynamic load balancing in distributed
computer systems. Int J Comput Sci Info Secur 10(6):153-160

Rimal BP (2011) Architectural requirements for cloud computing systems: an
enterprise cloud approach. J Grid Comput 9(1):3-26

Ponce LM, Santos W, Meira W (2019) et al, Upgrading a high performance
computing environment for massive data processing. J Internet Serv Appl
10. https//doi.org/10.1186/513174-019-0118-7

Nuaimi KA (2012) A Survey of Load Balancing in Cloud Computing:
Challenges and Algorithms. Network Cloud Computing and Applications
(NCCA), 2012 Second symposium on. IEEELondon, UK.

Zenon C, Venkatesh M, Shahrzad A (2011) Availability and load balancing in
cloud computing. Int Confer Comput Soft Model IPCSI 14:134-140
Campelo RA, Casanova MA, Guedes DO et al (2020) A brief survey on
replica consistency in cloud environments. J Internet Serv Appl 11. https://
doi.org/10.1186/513174-020-0122-y

Afzal S, Kavitha G (2019) Load balancing in cloud computing - a
hierarchical taxonomical classification. J Cloud Comp 8:22. https://doi.org/
10.1186/513677-019-0146-7

Xu Z, Xingxuan W (2015) A predictive modified round robin scheduling
algorithm for web server clusters. Proceedings of 34th Chinese Control
Conference. IEEE, Hang-Zhou

Brototi M, Dasgupta K, Dutta P (2012) Load Balancing in Cloud Computing
using Stochastic Hill Climbing-A Soft Computing Approach. In: Proc. 2nd
International Conference on Computer, Communication. Control and
Information Technology (C3IT)

Walczak M, Marszalek W, Sadecki J (2019) Using the 0-1 test for chaos in
nonlinear continuous systems with two varying parameters: parallel
computations. IEEE Access 7:154375-154385

Amazon, How Elastic Load Balancing Works. 2019. https://docs.aws.amazon.
com/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-
works.html . Accessed 23 Jan 2020

Rafique A, Van Landuyt D, Truyen E et al (2019) SCOPE: self-adaptive and
policy-based data management middleware for federated clouds. J Internet
Serv Appl 10. https://doi.org/10.1186/513174-018-0101-8

Crovella M, Bestavros A (1997) Self-similarity in world wide web traffic:
evidence and possible causes. IEEE/ACM Trans Networking 5(6):835-846
Domaniska J, Domanski A, Czachorski T (2005) The Influence of Traffic Self-
Similarity on QoS Mechanisms. Proceedings of SAINT 2005 Workshop,
Trento

Remesh Babu KR, Samuel P (2016) Enhanced bee Colony algorithm for
efficient load balancing and scheduling in cloud. In innovations in bio-
inspired computing and applications. In: Advances in Intelligent Systems
and Computing, vol 424. Springer, Cham, pp 67-78

Suchacka G, Dembczak A (2017) Verification of web traffic Burstiness and
self-similarity for multiple online stores. Adv Intell Syst Comput 655:305-314

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

(2020) 9:30 Page 11 of 11

Nishant K Load Balancing of Nodes in Cloud Using Ant Colony
Optimization, Computer Modelling and Simulation (UKSim). 2012 UKSim
14th InternationalConference on, vol 2012. [EEE, Cambridge, UK

Suraj P, Wu L, Guru MS, Buyya R (2010) A Particle Swarm Optimization-
Based Heuristic for Scheduling Workflow Applications in Cloud Computing
Environments. Proceedings of 24th IEEE International Conference on
Advanced Information Networking and Applications, Perth

Sharifian S, Akbari MK, Motamedi SA (2005) An Intelligence Layer-7 Switch
for Web Server Clusters. In: International Conference: Sciences of Electronic,
Technologies of Information and Telecommunications SETIT, 3rd edn, pp 8-24
Boutaba R, Salahuddin MA, Limam N et al (2018) A comprehensive survey
on machine learning for networking: evolution, applications and research
opportunities. J Internet Serv Appl 9. https://doi.org/10.1186/513174-018-
0087-2

Seok-Pil L, Nahm E-S (2012) Development of an optimal load balancing
algorithm based on ANFIS modeling for the clustering web-server.
Communications in Computer and Information Science, vol 310, pp 783-790
Sallami NMA, Daoud AA, Alousi SA (2013) Load balancing with neural
network. Int J Adv Comput Sci Appl 4(10):138-145

Zatwarnicki K, Platek M, Zatwarnicka A (2015) A cluster-based quality aware
web system. Information systems architecture and technology, vol 430.
Springer, Cham, pp 15-24

Mamdani EH (1977) Application of fuzzy logic to approximate reasoning
using linguistic synthesis, vol C-26. IEEE Transactions on Computer,
Washington, DC, p 1182 - 1191

Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-
propagating errors. Nature. 323:533-536

OMNeT++ Discrete Event Simulator. 2020. https://www.omnetpp.org/.
Accessed 02 Feb 2020.

Zatwarnicki K (2008) Determination of parameters of parameters of web
server simulation model. Information Systems Architecture and Technology:
Web Information Systems, Models, Concepts & Challenges. Springer, Cham,
pp 25-36

Munford M. How WordPress Ate The Internet in 2016... And The World in
2017.2017. https//www.forbes.com/sites/montymunford/2016/12/22/how-
wordpress-ate-the-internet-in-2016-and-the-world-in-2017/. Accessed 02 Feb
2020.

Cao J, Cleveland SW, Gao Y, Jeffay K, Smith FD, Weigle MC (2004) Stochastic
models for generating synthetic HTTP source traffic. Proceedings of Twenty-
third Annual Joint Conference of the IEEE Computer and Communications
Societies. INFOCOM, Hong-Kong, pp 1547-1558

Sony music, Main Page. 2019. https//www.sonymusic.com/ . Accessed 09
Mar 2019.

Pai VS, Aron M, Banga G, Svendsen M, Druschel P, Zwaenepoel W, Nahum E
(1998) Locality-aware request distribution in cluster-based network servers.
Proceedings of the 8th international conference on architectural support for
programming languages and operating systems. San Jos;. California; USA.
ACM SIGOPS Operating Syst Rev 32(5):205-216

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1186/s13174-015-0042-4
https://doi.org/10.1186/s13174-019-0118-7
https://doi.org/10.1186/s13174-020-0122-y
https://doi.org/10.1186/s13174-020-0122-y
https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1186/s13677-019-0146-7
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html
https://doi.org/10.1186/s13174-018-0101-8
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
https://www.omnetpp.org/
https://www.forbes.com/sites/montymunford/2016/12/22/how-wordpress-ate-the-internet-in-2016-and-the-world-in-2017/
https://www.forbes.com/sites/montymunford/2016/12/22/how-wordpress-ate-the-internet-in-2016-and-the-world-in-2017/
https://www.sonymusic.com/

	Abstract
	Introduction
	Related work
	Two-level fuzzy-neural web switch
	Classification of http requests
	The FIRST decision level
	The second decision level
	The process of choosing an executor to service the request

	Experiments and discussion
	Summary
	Abbreviations
	Acknowledgements
	Author’s contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

