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Abstract

In a high-speed free-flow scenario, a joint optimization scheme for content caching and resource allocation is
proposed based on mobile edge computing in Internet of Vehicles. Vehicle trajectory prediction provides the basis
for the realization of vehicle-cloud collaborative cache. By pre-caching the business data of requesting vehicles to
edge cloud networks and oncoming vehicles, requesting vehicles can obtain data through V2V link and V2I link at
the same time, which reduces the data acquisition delay. Therefore, this paper considers the situation where
bandwidth of V2I and V2V link and the total amount of edge cloud caches are limited. Then, the bandwidth and
cache joint allocation strategy to minimize the weighted average delay of data acquisition is studied. An edge
cooperative cache algorithm based on deep deterministic policy gradient is further developed. Different from Q-
learning and deep reinforcement learning algorithms, the proposed cache algorithm can be well applied to
variable continuous bandwidth allocation action space. Besides, it effectively improves the convergence speed by
using interactive iteration of value function and strategy function. Finally, the simulation results of vehicle driving
path at the start and stop are obtained by analyzing real traffic data. Simulation results show that the proposed
scheme can achieve better performance than several other newer cooperative cache schemes.

Keywords: Mobile edge computing, Cloud computing, Collaborative caching, Internet of vehicles, Resource
allocation, Deep deterministic policy gradient, Convergence speed

Introduction
In high-speed free-flow scenarios, vehicles can travel
freely at any speed. The vehicle may initiate some
business requests to remote cloud networks for
obtaining certain data during driving. If all such data
is transmitted to the vehicle user by remote cloud
networks, the vehicle user will experience a large
delay. Due to vehicles switch between edge clouds
frequently, vehicles need to constantly re-initiate re-
quests to the cloud for obtaining the remaining data
[1–3]. In addition, a single edge cloud-assisted cach-
ing strategy may cause vehicles to fail to obtain

complete data in high-speed free-flow scenarios. Thus, ve-
hicle cloud networks and edge clouds often need to pro-
vide caching services in a collaborative manner [4, 5].
Based on this, this paper proposes a vehicle-cloud col-

laborative caching strategy. That is, the edge cloud net-
work and oncoming vehicles cache the business data for
requesting vehicles and transmit it together when inter-
acting with them. By accurately predicting the trajector-
ies of vehicles, it is possible to determine at which
moment the oncoming vehicles can meet. In this way,
the collaborative edge cloud of oncoming vehicles can
be utilized for collaborative caching. When a vehicle is
requested to travel to a certain location, data can be
obtained from the edge cloud by V2I (Vehicle to Infra-
structure) link, and data can be obtained from the
oncoming vehicle by V2V (vehicle to vehicle
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communication) link. In the end, the vehicle can obtain
required data with lower latency, which improves the
QoS of cache service. However, the problems in the
above scenarios are as follows: On the one hand, the
bandwidth of wireless link is limited. How the limited
bandwidth is allocated to each V2I link and V2V link de-
termines the service delay of final vehicle users. On the
other hand, different cache ratios of edge cloud and on-
coming vehicles to data will also affect the transmission
rate. For different vehicle speeds, location distributions,
etc., the status of requesting vehicles to interact with
edge cloud or oncoming vehicle is different. How to
make effective cache adjustments affects service QoS
closely. Third, the number of caches in edge cloud net-
works is limited. How to guarantee the QoS of services
in a limited cache is also a challenge. Thus, this paper
performs a modeling analysis on the above scenarios,
and aims to minimize the weighted average delay of
requesting vehicle users, which studies the edge cloud
network bandwidth and cache allocation strategies. First,
the paper establishes the mathematical model, and pro-
posed an edge cooperative caching scheme based on
deep deterministic policy gradient (DDPG). By integrat-
ing the value iteration and policy gradient methods, the
convergence speed of this algorithm is accelerated. Com-
pared with the existing two cache strategies, the pro-
posed cache strategy can not only improve the content
hit rate, but also reduce system overhead and content
transmission delay. Finally, the performance of the pro-
posed strategy is verified by simulation.

Related works
Vehicle cloud networks based on mobile edge comput-
ing can effectively use vehicle resources to provide low-
latency cloud services and improve the dynamic accessi-
bility of resources. However, due to the limited scope
and scale of vehicle cloud network, how to efficiently
manage and allocate resources has become a major diffi-
culty for the vehicle cloud network. There are three
types of resources in the Internet of Vehicles: communi-
cation resources, computing resources and storage re-
sources. Communication resources are frequency
resources, time domain resources and airspace resources
required for V2V and V2I communication. Computa-
tional resources are the processor resources required to
perform complex operations and storage resources are
the storage space required for data storage. Many studies
have provided their own solutions to the problem of ve-
hicle cloud network resource allocation [6–15]. Refer-
ence [6] defined vehicle cloud network as a paradigm
shift of traditional vehicle self-organizing network. Since
vehicles not only use their on-board resources in the ve-
hicle cloud network, they also use cloud resources. Ref-
erence [7] first proposed a layered vehicle cloud network

and analyzed feasible application scenarios. Then, for the
above network architecture they studied how computing
and storage resources are shared in different applica-
tions. And they proposed a virtual machine migration
strategy based on game theory, which can achieve higher
resource utilization by virtual resource migration. Refer-
ence [8] proposed a distributed and adaptive resource
management method, which achieved the optimal
utilization of cognitive radio and soft input / soft output
data fusion in vehicle access networks. In such a way,
smartphones in cars with limited energy and computing
power can improve performance by uploading their
computing tasks to the local or remote cloud. Reference
[9] proposed a framework based on cloud computing,
which allows vehicles to switch between a Central Pro-
cessing Unit (CPU) and a Graphics Processing Unit
(GPU) in real-time when performing video processing.
Reference [10] studied the joint allocation strategy of
computing resources and communication resources
(slots) in edge cloud computing task offloading based on
non-orthogonal multiple access (NOMA). Reference [11]
studied the problem of computing task offloading for
cognitive vehicle cloud networks. The object considered
in reference [12] was an unpredictable available comput-
ing resource, and a linear programming-based schedul-
ing model was proposed. Besides, the model’s input was
a task with processing time. However, it assumed that
tasks cannot be processed in parallel. That is, a task is
randomly assigned to only one vehicle at a time. Refer-
ence [13] considered the dynamic nature of vehicles and
the change in the amount of resources will result when
vehicles enters or leaves vehicle cloud networks. In this
case, they presented a computing resource offloading
strategy based on the Semi-Markov decision process
(SMDP). Reference [14] considered a cross-domain re-
source allocation strategy. That is, calculation requests
that cannot be completed in the current cloud domain
will be offloaded to other cloud domains for completion,
and an optimal cross-domain resource allocation algo-
rithm was given. Reference [15] proposed an adaptive
computing resource allocation algorithm for real-time
vehicle cloud network services with the goal of minimiz-
ing energy consumption.
For the collaborative cache service in Internet of Vehi-

cles, some research work has proposed their own solu-
tions [16–19]. Reference [16] investigated the cooperative
caching strategies based on MANETs, and pointed out
which ones can be applied to Internet of Vehicles. Refer-
ence [17] gave a cluster-based Internet of Vehicles content
distribution strategy. They used the cache resources of
multiple vehicles in the vehicle cloud network for collab-
orative caching, thereby reducing the request loss and
cache loss of backhaul link. This work only considered
cache requests in the vehicle cloud network, whose
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request content is greatly restricted by the surrounding
vehicles. Reference [18] proposed a peer-to-peer (P2P) dir-
ect content distribution strategy between vehicles. Vehi-
cles can share the resources required by each other when
they meet each other. When there are no required re-
sources (that is, cache misses), the vehicle can also obtain
data through the edge cloud. They proposed cache place-
ment and content selection algorithms to reduce the loss
caused by access to cache. However, the work did not take
full advantage of edge cloud’s advantages in caching ser-
vices. Reference [19] considered the mobility of vehicles
and proposed a cluster-based collaborative caching strat-
egy. Based on the vehicle mobility, they clustered the vehi-
cles. The node selection and content placement strategies
of the intra-cluster and inter-cluster cooperative caches
are given to minimize the transmission delay. Similarly,
this work did not consider the role of edge clouds. From
the above research status, it can be found that very few
studies have been conducted on collaborative caching
strategies for vehicle cloud networks and edge cloud
networks.

System model
Scenario description
Assume that in a high-speed free-flow scenario, N vehicles
pass through a two-way two-car road segment, as shown in
Fig. 1. The vehicle edge cache scenario studied in this paper
includes a Macro-cell Base Station (MBS), several Roadside
Units (RSUs) and Content Caching Vehicles (CCVs). These
vehicles initiate a request for K, K ≤N type service data, and

mark V as a collection of requested vehicles. Since the edge
cloud can obtain the trajectories of vehicles in advance, it
can cache the business data in advance. When a vehicle
passes its coverage, data is obtained through V2I. At the
same time, K vehicles in oncoming vehicles on the road will
also cache some business data, which can improve the effi-
ciency of data acquisition. The set of oncoming vehicles is
represented by the symbol K. In this case, when vehicles in
the two directions meet, the opposite vehicle can transmit
buffered data to the requesting vehicle through V2V com-
munication method, thereby realizing the collaborative cache
between vehicles and edge cloud. Assume that each vehicle
runs at a constant speed on the road, and let vn be the speed
of the n th vehicle. The maximum coverage of the base sta-
tion in edge cloud is RI, the length of road in coverage is L,
and the longest communicable distance of V2V link is RV.

Vehicle position model
The relative position models of vehicle and base station,
vehicle and opposite vehicle are shown in Figs. 2 and 3
respectively, where Fig. 2 shows the relative positions of
vehicles and base stations. h represents the vertical dis-
tance from the base station to the road, ht and ht repre-
sent the antenna heights of base stations and vehicles
respectively. Then there are:

R2
I ¼ h2 þ L2

4
þ ht−hvð Þ2 ð1Þ

Fig. 1 Schematic diagram of the vehicle-cloud collaboration cache scenario

Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:33 Page 3 of 12



Let vehicle n be dnt from the base station at time t.
The expression that can be calculated for dnt is:

dnt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
2
−vnt

� �2

þ h2 þ ht−hvð Þ2
s

ð2Þ

Figure 3 shows the location model of vehicles and the
oncoming vehicles. Suppose the lane spacing is l. Take the
position where base station is perpendicular to the road as
the 0 point, and the opposite direction as x-axis direction.
Since there are single lanes on both sides, the vehicle pos-
ition can correspond to coordinate points on several axes.
If the coordinates of starting positions for two vehicles are
xn0 and xk0, and the speeds are vn and vk, then the distance
between vehicle n and vehicle k at time t is

dnkt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn0−xk0ð Þ− vn þ vkð Þt½ �2 þ l2

q
ð3Þ

Communication model
In this scenario, there are two types of communication
methods, V2I communication and V2V communication.

It is assumed that the V2I communication and the V2V
communication link occupy different frequency bands,
and there is no interference between them. Assume that
the system allocates a total of Bm and bm bandwidths for
the V2I link and the V2V link respectively. The edge
cloud needs to allocate V2I and V2V bandwidth for
transmission of each vehicle. It is assumed that the smal-
lest assignable units of bandwidth are B0 and b0 respect-
ively, and the noise power is σ2. Besides, the bandwidth
allocation of V2I and V2V links is performed by the
edge cloud. The transmission rate formulas for V2I and
V2V links are given below.

V2I communication link Base stations need to transmit
the pre-buffered data to requesting vehicles through V2I
communication link. The number of assignable band-
width units is MB = Bm/B0. Assume that the number of
bandwidth units allocated by edge cloud to the n th ve-
hicle is Mn, Mn ≤MB. The transmission rate of its V2I
communication link is expressed as:

Cn ¼ MnB0ð Þ log 1þ γn
� � ð4Þ

Fig. 2 The relative position model of vehicles and base stations

Fig. 3 The relative position model of vehicles and oncoming vehicles
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where γn is the received signal-to-noise ratio of V2I link
and is given by:

γn ¼
PGGnh

2h2vPL
σ2

ð5Þ

where P is the transmission power of base stations, G is
the reception gain of base station antenna, Gn is the re-
ception gain of vehicle antenna, h and hv are the height
of base stations and vehicle antenna. σ2 is the white
Gaussian noise power and the path loss of V2I link is in
dB Is defined as

PL ¼ 128þ 37:6� lg dntð Þ ð6Þ

V2V communication link The opposite vehicle needs
to transmit the buffered data to requesting vehicles by
V2V communication link. The number of V2V link as-
signable bandwidth units is mb ¼ bm

b0
. For vehicle n, if it

obtains data through vehicle k, and the number of V2V
bandwidth allocated to link by edge cloud is mn. The
transmission rate of its V2V communication link is
expressed as:

Cn ¼ MnB0ð Þ log 1þ γn
� � ð7Þ

where γnk is the received signal-to-noise ratio and is
given by:

γnk ¼
pkGkGnh

4
v dnktð Þ−ς

σ2
ð8Þ

where pk is the vehicle transmission power, Gk is the ve-
hicle transmitter antenna gain, and ς is the V2V link
path loss factor.

Cache model
It is assumed that each type of business data in the sys-
tem can be divided into zk parts and transmitted separ-
ately through appropriate file encoding technology. The
zk shards will be pre-cached to the edge cloud and an
oncoming vehicle, respectively. Assume that the amount
of data of the type k service is Wk. The amount of data
of each shard is Wk0 =Wk/0, the total cache resource of
edge cloud is U, and the proportion of the edge cloud
cache occupied by the type k service is ηk. Then the

amount of data cached by edge cloud side is ½Uηk
Wk0

�Wk0 .

The amount of data buffered by oncoming vehicles is

after the ½Uð1−ηk Þ
Wk0

�Wk0 oncoming vehicle has cached cer-

tain business data in advance. Its business data cache
cannot be increased. The edge cloud cache can dynamic-
ally adjust the cache amount of its business. In this way,
three situations can happen to the amount of cache:

� Cache redundancy: The amount of cache on edge
cloud side is higher than its initial cache level, so it
overlaps with the oncoming vehicle cache to cause
redundancy. Besides, the edge cloud can control
requesting vehicles to obtain overlapping caches
from opposite vehicles or edge cloud side by
adjusting the bandwidth;

� Complete cache: At this time, the amount of edge
cloud cache is the amount required by vehicles. And
the vehicles can obtain data completely with low
latency with sufficient bandwidth and time:

� Insufficient cache: The amount of cache on edge
cloud side is lower than its initial cache amount. At
this time, requesting vehicles cannot fully obtain all
the data. It will have to get the remaining data
through the remote cloud within next edge cloud
coverage. This greatly increases data acquisition
delay and reduces QoS.

Except for the buffer amount, the initial position and
speed of vehicles will also affect the final transmission
result. For example, when oncoming vehicles are fast,
V2V link communication time is lower than the time re-
quired for data transmission. When corresponding cache
data is not added on the edge cloud side, requesting ve-
hicles cannot obtain complete data. Regardless of insuffi-
cient cache or insufficient transmission time, the
remaining business data will have to be obtained by
requesting vehicles to the remote cloud through the
edge cloud of next segment. Since the remote cloud data
transmission needs to go by the Internet, the delay of
remaining business data transmission will greatly in-
crease. The remaining service data needs to be returned
to the next edge cloud by remote cloud: then sent to ve-
hicles by V2I link. Assume that the channel quality of
next segment is the same as current segment, and the
backhaul link rate from remote cloud to edge cloud is
fixed at C, with a fixed request delay τr, and the
remaining data amount is Ŵ k :

T
0
n ¼ Ŵ k

1

C
0
n

þ 1
C

 !
þ τr ð9Þ

Here, C
0

n is the transmission rate of V2I link between
vehicles and the next edge cloud.

Optimization goal
During the operation of system, the edge cloud will ob-
serve the system once every T time period, and take a
decision to adjust bandwidth and the number of edge
cloud caches. It is assumed that T period is sufficiently
small. Within each time period, the channel quality will
not change much. The channel quality at the initial time
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of T period is taken as the average channel quality in
period. Assume that the number of time periods during
which the vehicle is transmitting arbitrarily on the
current road section is jn, and the time spent by vehicles
to obtain data is:

τn ¼ jnT þ τ
0
n ð10Þ

On the basis of delay, in order to balance efficiency
and fairness, this paper defines optimization goal as min-
imizing the weighted average transmission delay [20].

min
XN
n¼1

ρnτn ð11Þ

s:t:
XN
n¼1

MnB0≤Bm ð12Þ

XN
n¼1

mnb0≤bm ð13Þ

XN
n¼1

ρn ¼ 1 ð14Þ

Here, ρn represents the weighting factor of delay.

Model construction
The above problem is first modeled as a Markov deci-
sion process model. Its basic five-tuple is: ⋅.

M@ τ; S;As;R; ρf g ð15Þ
The following details the model building process:

Moment of decision
Let the time at which any one of vehicles in the set N
first obtain data as the starting time T0. Edge cloud ob-
serves the state of system every time T passes, and then
take a decision. Define the end time of last-vehicle data
transmission as the end time of this phase, that is, Ts.
This model is a phased model with a termination state.
The set τ formed by the model’s decision time can be
expressed as:

τ ¼ T 0;T 0 þ T ;Tsf g ð16Þ

State space
The decision center needs to observe the state of system
at each decision moment. The objectives of its observa-
tions include:

� Vehicle instantaneous speed and position
distribution: the instantaneous position di, i∈N of
each vehicle in system;

� Vehicle remaining business data: Each requesting
vehicle in system has the most remaining business
data. Including the part that should be obtained by
oncoming vehicles and the part that should be
obtained by edge cloud, it is defined as DV

i and DI
i .

The state at the moment of decision can be
expressed by the following formula:

s ¼ d1; d2;K dNþK ;D
V
1 ;D

I
1;K DV

N ;D
I
N

� � ð17Þ

The set of all possible states is the state space, denoted
by S. Obviously, S is continuous space.

Decision space
At T0 + iT, in addition to observing system status, edge
cloud will also make a decision to adjust the edge cloud
data cache ratio and bandwidth allocation. The decision
consists of three parts, namely, 1) V2I link bandwidth al-
location amount; 2) V2V link bandwidth allocation
amount; 3) edge cloud-side cache ratio, the decision can
be expressed as a = {Bi, Bv, η}, where Bi = {Bi1,…, BiN},
Bv = {Bv1,…, BvN}, η = {η1,…ηK}. The set of all possible
decisions under state s is denoted as As, and let A =Us ∈

SAs be called the system decision space.

Revenue and state transition
The system’s benefits at each stage are defined as:

r s; að Þ ¼ −
XN
i¼1

ρiT ; dit < RI or diKt < RV

ρiτ
0
n; others

�
ð18Þ

It can be seen that the return directly reflects the size
of objective function. That is, the higher time delay of
consumption, the smaller return and the smaller object-
ive function. For a specific state s, after the edge cloud
captures decision a, the system state will transition to
state s′ at next decision moment.

Deterministic strategy
A policy distribution describes the possible decision dis-
tributions that the system captures in different states.
Define the continuous function πt(a|s) ≥ 0 as a strategy
distribution with

R
a∈As

πtðajsÞ ¼ 1 . In this system, the

choice of strategy is completely determined by edge
cloud and is not affected by random factors in the envir-
onment. That is, edge cloud will choose a decision with
probability 1 at each decision moment, and record it as
a = μ(s). Such a strategy is called a deterministic strategy.

Decision value function
The decision value function Qπ(s, a) is used to describe
the expected discounted income obtained by capturing

Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:33 Page 6 of 12



decision a = μ(s) in state s and strategy π in future states.
According to the definition: ⋅

Qπ s; að Þ ¼ Eπ

XTs

t¼T0

λt−1r s; að Þ
( )

ð19Þ

Here, λ is a discount factor. Then the original
optimization goal can be transformed into finding the
optimal strategy π∗ such that Qπ∗(s, a)=maxπQπ(s, a).

Edge cooperative caching solution based on
deterministic policy iteration
Reinforcement learning is an important branch of ma-
chine learning. It maximizes / minimizes cumulative ex-
pected value of the return / cost function, enabling the
agent to learn a set of optimal or near-optimal solutions
from real and dynamic environments. There are two
main branches of reinforcement learning: model-based
methods and model-free methods [21]. The former is
mainly used in the field of automatic control. Generally
speaking, Bayesian networks are used for modeling in
model-based reinforcement learning, and the optimal so-
lution to the problem is obtained through optimization
theory. Model-less reinforcement learning framework is
considered as a data-driven learning strategy. It learns
and predicts optimal value functions and strategy func-
tions to achieve optimal goals. This chapter will focus
on adopting a model-free learning framework based on a
large number of experiments and historical experiences
to adapt to dynamic environment, and to achieve the op-
timal decision of edge cache system. There are three
main types of model-free reinforcement learning: critic
models based on value functions, actor models based on
strategy functions, and actor-critic based on value func-
tions and strategy functions model. Based on a deter-
ministic actor-critic model, a deep neural network is
used to provide accurate estimates of deterministic pol-
icy functions and value functions. The combined archi-
tecture can be used to solve the proposed joint
optimization of content caching and resource allocation
for edge cooperation. In addition, deterministic-based
strategies can be well applied to continuous bandwidth
allocation decisions. The DDPG framework is mainly
composed of a main network, a target network and a
memory slot. Among them, the main network and the
target network are respectively composed of a deep
neural network based on an actor model and a critical
model.

Training and update rules for deep critic cache network
The network of deep critics mainly learns the predicted
value Qθ(s, a) of an action value function with parameter
θ, that is,

Qθ s;að Þ ¼ θT �Φ s;að Þ ¼
XH
h¼1

XH 0

h
0 ¼1

θhh0ϕqh s; að Þ þ θ0h0
� 	

ð20Þ
For the q th training sample, Φ = (ϕq1(s, a),…ϕqH(s, a))

is a activation function vector, θ is the neural network
parameter matrix, ½θ01;…θ0H 0 � is the neural network bias
parameter vector, ½θh1;…θhH 0 � is the neural network
weight vector, and H, H′ is the number of hidden units
in the adjacent neural layer.
In order to solve the problem of deterministic strategy

exploration [22, 23], offline learning methods are used to
distinguish the sampling strategy from exploration strat-
egy. In order to improve the efficiency of cache learning
algorithm, a mini-batch method is used instead of the
batch gradient descent method. This method updates
the parameters of entire neural network at each content
transmission time slot. Define the memory slot size as B
and set D = {1, 2,…q,…D} as the index set of training
samples. In order to obtain the loss function, the follow-
ing error values are defined:

δTD ¼ c s; að Þ þ γQ
0

θ
0 s

0
; a

0
� 	

−Qθ s; að Þ ð21Þ

Here, γ discount factor, Q
0

θ
0 ðs0 ;a0 Þ is the real value of

target network s′ performing action a′ in the state. By
randomly selecting a predefined number of samples D
from the memory slot, and using a random gradient des-
cent strategy to update parameters of the main network,
the update rules are as follows:

θ : θ−ηθδTD∇θQθ s; að Þ ð22Þ
Here, ηθ is the step size of stochastic gradient descent.

The target network is used to evaluate true performance
of computational migration network, that is, output true

Q
0

θ
0 ðs0 ; a0 Þ value.

Training and updating rules for deep actors’ cache
network
Instead of learning a random strategy distribution func-
tion π(s|a), the deterministic actor network learns a de-
terministic strategy a = μϖ(s) with a parameter ϖ.
Similarly, the function is predicted by introducing a deep
neural network, expressed as follows:

μϖ sð Þ ¼ ϖT �Ψ s;að Þ ¼
XH
h¼1

XH 0

h
0 ¼1

ϖhh
0φqh s; að Þ þϖ0h

0
� 	

ð23Þ
For the q th training sample, Ψ = (φq1(s, a),…φqH(s, a))

is the activation function and ϖ is the parameter of
neural network. ½ϖ01;…ϖ0H

0 � is the bias parameter of
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neural network, and ½ϖh1;…ϖhH
0 � is the weight param-

eter of neural network.
The goal of edge cooperative buffering is to minimize

joint optimization problem defined in the formula using
stochastic gradient descent. The literature has proved
that solving the gradient of objective function is equiva-
lent to solving the gradient of Q(s, a). The gradient of
parameter is:

∇ϖQθ;ϖ s; að Þ ¼ ∂μϖ sð Þ
∂ϖ

∂Qθ s; að Þ
∂a






a¼μϖ sð Þ

ð24Þ

Globally or locally optimal solutions can be found by
minimizing Q. The update rule for parameter ϖ can be
expressed as:

ϖ : ϖ−ηϖ∇ϖQθ;ϖ s; að Þ ð25Þ

Here, ηϖ > 0 is the learning rate.

Caching strategy selection method and target neural
network update rule
Most studies have shown that if an agent pays too much
attention to exploration and utilization strategies, it will
cause poor network performance. To solve this problem,
the strategy selection method based on Ornstein-
Uhlenbeck noise obtains better cache strategy and train-
ing performance [24]. The Ornstein-Uhlenbeck method
uses the following formula to select current cache strat-
egy. The expression is as follows:

μ sð Þ ¼ μϖ sð Þ þ ςN adinð Þ ð26Þ
Here, ς is a normal number, adin is the dimension of

the cache action space, and N is a standard normal ran-
dom process.
The update of target network can be viewed as an “ap-

proximate replication” of the main network. In fact, for
the deep target network structure, such as the number
of layers and the number of hidden units, it needs to be
consistent with the main network structure. In addition,
in order to improve the robustness of learning perform-
ance, the update speed of target network parameters
should be less than that of the main network. An Expo-
nentially Weighted Moving Average (EWMA) strategy is
used here to update the parameters θ′ and ϖ′ of target
network. The update rules are as follows:

θ
0
: τθ0θ

0 þ 1−τθ0
� 	

θ ð27Þ

ϖ
0
: τϖ 0ϖ

0 þ 1−τϖ 0
� �

ϖ ð28Þ

Here, τ
0
θ∈½0; 1� and τ

0
ϖ∈½0; 1� are the weights of param-

eters θ′ and ϖ′. θ′ and ϖ′ can be regarded as approxi-
mate averages of 1=ð1−τ 0

θÞ and 1=ð1−τ 0
ϖ Þ.

The main parameters of DDPG-based edge coopera-
tive cache algorithm include the total number of simula-
tion experiments, the state space of system, the
attributes of content, the learning rate, and the size of
memory slot. After completing the initialization of system
parameters and hyper parameters, intelligently implement
edge caching strategies at the beginning of each experi-
ment, including content placement / update strategies
based on large time scales and content transmission strat-
egies based on small time scales. During each experiment,
the main network uses Ornstein-Uhlenbeck method and
stochastic batch gradient descent method to update the
parameters of critical network and the parameters of actor
network. Based on the preset number of experiments,
EWMA mechanism is used to update the parameters θ′ of
critical network in the target network and the parameters
ϖ′ of actor network. Finally, the iteration of algorithm
ends after the maximum number of trials.

Experimental results and analysis
In order to verify the performance of our algorithm, the
simulation experiment is designed in this section to
compare with two cooperative caching strategies in ref-
erence [15, 19], and the results are analyzed.

Simulation environment and parameter settings
In this section, Python scripting language is used to build
the simulation environment for edge cooperative cache
proposed in this paper. And we use deep learning frame-
work of TensorFlow and open source DDPG module to
verify the performance of edge cooperative cache. In order
to simulate the traffic network environment, this paper uses
the Geohash algorithm to implement the division of traffic
network. The road network in some areas of the city is di-
vided into 16 transportation areas. The macro base station
is set in the center of road network to cover all traffic areas.
Deploy 5 RSUs in traffic areas with high traffic flow. By
analyzing real traffic data, the destination is predicted under
the given current position of vehicles, and the driving path
of the starting and ending points of vehicles is simulated.
As the number of trials increases, the training performance
based on DDPG has the characteristic of violent oscillation
within a certain range. This paper uses statistical averages
to calculate the cumulative average of system overhead.
Table 1 shows the parameters of edge cache system and

DDPG neural network parameters. In order to verify the
performance of our proposed edge cooperative cache strat-
egy, two benchmark schemes are proposed: a random edge
cache strategy and a non-cooperative edge cache strategy.
For the random cache strategy, content of different process
levels is randomly placed on vehicles and roadside units.
For the non-cooperative edge cache scheme, the joint
optimization algorithm proposed in this paper is used to
directly deploy the content on the roadside unit.
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Vehicle destination prediction and driving path
simulation
This section analyzes a set of real vehicles driving data.
The data consists of 8 features: sample index, vehicle
index, start time, end time, start latitude, start longitude,
end latitude and end longitude. By mining these histor-
ical traffic data and using different machine learning al-
gorithms to train the model, given the vehicle index and
starting point latitude and longitude, accurate prediction
of vehicle destination is achieved. Compared with a lon-
ger character string to characterize the traffic area where
the vehicle is located, using a shorter character string
can significantly improve the accuracy of vehicle destin-
ation prediction. The heuristic results show that in the
case of limited data features, the length of the Geohash
characters can be flexibly controlled to control the ac-
curacy of the corresponding traffic area.
Figure 4(a) and (b) are the simulation results of space-

time migration of CRV and CCV respectively. In Fig. 4,
the abscissa represents an index value of a content trans-
mission slot based on a time domain, and the ordinate

represents an index of a traffic area based on an air-
space. Simulated 16 road network traffic areas and 10
content transmission time slots. Based on the driving
route of CRV2, since CRV2 passes through different traf-
fic areas in each time slot, it can be inferred that the route
has a higher traffic efficiency. In addition, a useful result
was observed from the CRV9’s driving trajectory, the ve-
hicle frequently appeared in a certain traffic area. The rea-
son may be that CRV9 travels to some hot spots, such as
subway stations or commercial centers.
Figure 4(b) shows that CCV16 stayed on traffic area-6

for a long time. Therefore, when CRV2 passes through the
traffic area, the two can mutually share resources and in-
formation through V2V. Besides, CCV20 meets CRV2,
CRV5 and CRV9 in different time slots. Therefore, con-
tent with higher popularity can be deployed on CCV20 in
advance to improve the hit rate of content acquired by
CRV and reduce the transmission delay of content. It can
be seen from the simulation results shown in Fig. 4 that
the content cache strategy is designed based on the vehicle
density and the driving path. This will provide richer a-
priori information for the edge cooperative cache system,
thereby improving cache performance.

Numerical analysis of cache performance
Figure 5 shows the comparison results of system over-
head under different cache strategies in an edge co-
operative cache system with CRVs = 30 and CCVs = 20.
As the number of simulation experiments increases, all

Table 1 Parameter settings of DDPG neural network

Number of layers in the neural network 2

Number of hidden units [20, 15]

Maximum number of experiments 3000

Maximum number of content transfer cycles 10

Learning rat [10−4, 10−6]

Fig. 4 Simulation of driving path based on vehicle starts and stop positions
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three content caching strategies can reach a stable cu-
mulative average. The following results can be obtained
from Fig. 5: Firstly, the non-cooperative cache scheme in
reference [15] has the highest average system overhead.
The main reason is that CRV needs to get more content
fragments from the centralized cache node in a single
content transmission slot. This results in higher content
acquisition costs. Secondly, since CCVs can provide
more mobile storage resources, even if reference [19]
adopted a random cache strategy, the V2V cooperative

cache strategy can effectively reduce system overhead.
Thirdly, compared with the two benchmark schemes,
the cooperative cache scheme proposed in this paper
can minimize system overhead. The simulation results
prove the effectiveness of joint content placement and
content transmission optimization algorithm from the
perspective of reducing system overhead.
Figure 6 shows the comparison results of average

transmission delay of content under different cache
strategies. In order to reduce resource usage overhead

Fig. 5 Comparison of the cumulative average system cost under different cache strategies

Fig. 6 Comparison of average content transmission delay under different cache strategies
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during content transmission, CRVs should look for an
access mode with lower resource costs. It gets all the
content it needs with the maximum tolerable content
transfer latency. For the non-cooperative caching strat-
egy in reference [15], since the static roadside unit does
not achieve full coverage of the road network, some
CRVs content meets its own performance requirements.
For V2V-assisted caching strategies, CCVs can provide
richer mobile bandwidth and storage resources. In this
case, based on the vehicle’s movement path, the chances
of CRVs and CCVs establishing V2V connections will be
significantly increased. Therefore, reference [19] adopts
a random storage strategy to reduce the content trans-
mission delay. Compared with the random caching strat-
egy, the edge cooperative caching strategy proposed in
this paper performs joint optimization on content place-
ment / update and content transmission. Therefore, the
minimum content transmission delay can be obtained.

Conclusion
In this paper, the problem of joint allocation based on
edge cloud communication and cache resources in high-
speed free-flow scenarios for vehicle-cloud collaborative
caching is studied in depth. The above research proves
that the vehicle’s driving trajectories can be accurately
predicted and the edge cloud cache placement method
can be determined. Furthermore, the data can be cached
in advance to oncoming vehicles and the edge cloud and
transmitted to requesting vehicles at the same time, so
as to reduce the user delay for obtaining data. In the
above scenario, this paper studies the bandwidth alloca-
tion strategy of V2I and V2V communication links and
the strategy of adjusting cache ratio between base sta-
tions and oncoming vehicles with the goal of minimizing
weighted average delay. Besides, the content caching
strategy of Actor-Critic (AC) learning model based on
deep neural network is adopted. We predict vehicle des-
tinations accurately based on real traffic data and the ve-
hicle travel path between starting point and destination
is simulated. The proposed caching strategy can not only
improve the hit rate by placing and updating content in
advance, but also improves the convergence speed of our
algorithm based on deterministic strategy and the small
batch gradient descent method. Finally, the simulation re-
sults show that the performance of our algorithm is better
than the benchmark strategy under different draw speeds,
traffic volumes and cache numbers.
Due to the complexity of Internet of Vehicles and the

limitations of our research capabilities, it is impossible
to fully study the resource management issues in various
scenarios and levels in Internet of Vehicles. Therefore,
the research in this paper still has certain deficiencies
and limitations. From the perspective of Internet of Ve-
hicles resource management, this paper designs

computing migration and edge caching strategies to
meet users’ business needs and performance require-
ments. The high-speed mobility of vehicles will cause
the spatial and temporal migration of road network traf-
fic flow and heterogeneous services of Internet of Vehi-
cles, and then change the vehicle density and vehicle
resource requirements in each transportation area. It
can be seen that the edge network resource status and
road network traffic situation have a certain degree of
coupling and interchangeability, which requires coordi-
nated optimization of resource management and road
network traffic control behaviors in order to maximize
the utilization of communication, computing and storage
resources.
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