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Abstract

With the development of cloud computing, edge computing has been proposed to provide real-time and low-delay
services to users. Current research usually integrates cloud computing and edge computing as cloud-edge fusion
computing for more personalized services. However, both cloud computing and edge computing suffer from high
network consumption, which remains a key problem yet to be solved in cloud-edge fusion computing environments.
The cost of network consumption can be divided into two parts: migration costs and communication costs. To solve
the high network consumption problem, some virtual machines can be migrated from overloaded physical machines
to others with the help of virtualization technology. Current network perception migration strategies focus more on

the communication cost by optimizing the communication topology. Considering both communication and
migration costs, this paper addresses the high network consumption problem in terms of the communication
correlations of virtual machines and the network traffic of the migration process. It proposes three heuristic virtual
machine migration algorithms, LM, mCaM and mCaM2, to balance communication costs and migration costs. The
performance of these algorithms is compared with those of existing virtual machine migration algorithms through
experiments. The experimental results show that our virtual machine migration algorithms clearly optimize the
communication cost and migration cost. These three algorithms have a lower network cost than AppAware, an
existing algorithm, by 20% on average. This means that these three algorithms improve the network performance and
reduce the network consumption in cloud-edge fusion computing environments. They also outperform existing
algorithms in terms of operation time by 70% on average.
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Introduction

As a new type of pay-as-you-go computational model,
cloud computing is widely studied and applied in
academia and industry. Edge computing is an extension
of cloud computing that provides lower delay and higher
real-time services from the devices closer to users. Cur-
rent research usually integrates cloud computing and
edge computing as cloud-edge fusion computing to pro-
vide more personalized services than either of the two
individual computational models. Cloud computing
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includes applications and datacenters that provide cloud
operating environments. However, the continuous expan-
sion of datacenters increases the cost. Statistics show that
the energy consumption of a datacenter is the highest
among its different maintenance costs [1]. High energy
consumption equates to a continuous increase in main-
tenance fees. In 2010, the electricity cost of all data-
centers was 11.5 billion dollars [2]. Meanwhile, as the
network bandwidth increases, the datacenter’s network
performance, network traffic and network energy con-
sumption become increasingly important [3, 4]. Network
consumption encounters many problems, such as network
congestion [5], which reduces the network performance
and usability. One estimation indicates that the cost of
a datacenter’s network energy consumption is 10%—20%
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of the total cost [6]. Given that edge computing devices
have much less computing and network resources than
cloud computing, edge computing also suffers from a high
network consumption problem. Therefore, in cloud-edge
fusion computing environment, high network consump-
tion is a key problem yet to be solved.

As the underlying technology of cloud computing,
virtualization integrates users’ applications as a virtual
machine and allows users to manage and use this virtual
machine conveniently [2]. It also makes the optimiza-
tion of network consumption possible. Virtual machines
can be migrated to a small number of physical machines
and unused physical machines can be powered off to
achieve a higher resource utilization ratio. This kind
of migration strategy only focuses on the computing
resources of the physical machines, such as the CPU,
memory and disk storage. However, virtual machine
migration is a resource-intensive procedure [7] and con-
tinuously demands not only computing, but also net-
work resources. Most existing studies focus on the com-
puting resources and limited studies have considered
the influence of network resources on virtual machine
migration [8]. Therefore, designing a virtual machine
migration algorithm that can improve network per-
formance and reduce network consumption would be
significant in improving cloud-edge fusion computing
performance.

V. Shrivastava et al. [3] proposed Application Aware
(abbreviated as AppAware), as a network perception vir-
tual machine migration strategy. It considers not only the
computing resources, but also the topological structure
of the underlying physical machines. AppAware migrates
all virtual machines on a physical machine with a work-
load that exceeds its resource limits to other physical
machines that have a better topological network com-
munication structure. The migration of virtual machines
faces several challenges in network performance. First,
the migrated virtual machine needs a appropriate des-
tination physical machine which has better communi-
cation correlations. Second, the virtual machine migra-
tion network traffic also reduces network performance,
which need to be minimized. While AppAware opti-
mizes the network performance, the migration also cre-
ates network traffic which in turn reduces network per-
formance. Therefore, a virtual machine migration strategy
should consider migration traffic and ensure the net-
work performance of cloud-edge fusion computing in
both virtual machine transmissions and normal working
processes.

In cloud-edge fusion environment, edge comput-
ing devices have limited computing resources and
network resources. Therefore, we consider that the vir-
tual machine migrations create large volume of net-
work traffic and limit the network performance of
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cloud-edge fusion computing. Considering that the
less researches focus on the optimization of virtual
machine migration network traffic, we propose a method
which can balance the communication consumption
and network traffic. Our contribution is summarized as
follows:

e We take both communication costs and migration
costs into the virtual machine migration problem to
have a better optimization on the cloud-edge fusion
computing environment. Then we give the
mathematical definition of these two costs and a
linear programming definition of the virtual machine
migration problem.

e We propose three virtual machine migration
algorithms, LM, mCaM and mCaM2, to solve the
virtual machine migration problem. In the design of
these algorithms, we use the weighted coefficients to
balance the optimization of the communication cost
and the migration cost.

¢ By simulation experiments, we demonstrate that our
algorithms have a better optimization on datacenters.
To compare the performance of these three
algorithms, some experiments are conducted with
various settings. In addition, we also compare the
performance of the three algorithms with that of
AppAware. Experimental results show that our
dynamic algorithm reduces network and migration
costs by 20% on average comparing with AppAware.
And the proposed algorithms also outperform
existing algorithms in terms of operation time by 70%
on average.

For cloud-edge fusion computing, these algorithms sig-
nificantly improve the network performance and reduce
the power consumption of the edge network devices. It
contributes to the development and further utilization of
cloud-edge fusion computing. Moreover, the communica-
tion correlations between cloud center and edge devices
is optimized, resulting in less network traffic and lower
communication delay.

The paper is organized as follows: “Related work”
describes related work on virtual machine migration cost
and network perception migration methods. “Definition
of the network-aware virtual machine migration problem”
describes the model of the network perception virtual
machine migration problem and improvements to this
problem model. In “Optimization of the virtual machine
dynamic migration algorithm’, we introduce the design of
the LM, mCaM and mCaM2. In “Experiment’, we eval-
uate the performance of these three algorithms in terms
of total cost, communication cost and migration cost.
The performance results are compared with the exist-
ing algorithm AppAware. Finally, in “Conclusion” sections
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we summarize our algorithms and draw up some
conclusions.

Related work

In this section, we summarize research on virtual machine
migration problem. This is divided into two parts: the
migration cost problem and the network perception
migration problem. The research on the migration cost
problem clarifies what can influence the performance
degradation brought about by migration. The research
on network perception migration focuses on power con-
sumption, datacenter network congestion and commu-
nication correlations between application layer virtual
machines.

Research on the cost of virtual machine migration

A. Verma et al. [9] studied the cost of virtual machine
migration. Their experiment revealed that migration is
irrelevant to workload and it is only decided by the vir-
tual machine itself. Specifically, the migration cost can be
measured by the throughput and performance reduction
brought about by migration. L. Lefévre [10] mentioned
that online migration from the source physical machine
to the destination physical machine involves a physical
memory page exchange. If the virtual machine is running,
it will be paused during the duplication from the first to
the last memory page. H. Liu et al. [11] considered the
online migration cost in their examination of datacen-
ter performance and power consumption management.
Through an experiment on XEN, they revealed that the
power consumption of the migration of a virtual machine
has a positive correlation with network communication
traffic.

Research on network perception virtual machine migration
Network perception virtual machine migration is the key
point of this study. Research on this topic has shown lim-
ited progress. Most current studies on virtual machine
migration and physical machine integration have focused
on the conservation of system resources, such as CPU,
memory, and disk storage. However, the network costs of
current datacenters accounts for an important proportion
of the total cost and is reflected in the following aspects.
First, Wen et al. [5] found that the network cost of a dat-
acenter accounts for 10%—20% of the total cost. Second,
a datacenter has a large network communication system,
which requires high network bandwidth usage. Thus, net-
work congestion and other issues occur at several switches
and switch ports [3]. If no measures are in place to handle
these problems, the performance of the datacenters will
reduce sharply, and the maintenance costs will increase
rapidly. However, research on network perception virtual
machine migration is still in the initial stages and has not
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received sufficient attention. Here, we review the research
on network perception virtual machines from different
angles.

Research on the angle of network power consumption

E. Feleke et al. [12] proposed a virtual machine place-
ment algorithm based on both bin-packing heuristics
and physical machines’ power efficiently Medium-Fit to
reduce SLA violation. They found that the resource uti-
lization level threshold of overloaded physical machines
influences the power efficiency. The algorithm was pro-
posed to meet different demands of power efficiency. B.
Heller et al. [13] found that network power consump-
tion accounts for 10%—20% of the total datacenter power
consumption. They indicated that the ElasticTree model
can serve as a topological graph of datacenter physi-
cal machines. To minimize network consumption, they
introduced an algorithm for calculating the optimal net-
work subset. The algorithm abstracts the optimization
problem as a subset and flow assignment problem. They
also compared the differences among a formal algorithm,
a greedy algorithm, and a topological perception algo-
rithm in terms of solution quality and extensibility. M.
Zhani et al. [14] approached the allocation problem from
virtual machines to the virtual machine datacenter and
regarded several resources as the fitness value of opti-
mization. This algorithm aims to maximize benefits of
virtual machine migration and minimize the energy con-
sumption of datacenters. Sukhpal Singh et al. [15] pro-
posed a heterogeneous self-optimization system for cloud
energy efficiency. To optimize the energy consumption
of cloud computing, an algorithm was proposed to esti-
mate the energy consumption of each task and assign
each task to the virtual machine with the lowest energy
consumption. Sambit Kumar Mishra et al. [16] proposed
a virtual machine selection algorithm to minimize the
energy consumption based on dynamic voltage frequency
scaling technology. The proposed algorithm estimates the
energy consumption and execution time of each virtual
machine and assigns each task to the virtual machine
with minimal energy consumption and execution time.
Next, for further optimization of the energy consump-
tion, the algorithm finds the voltage frequency pairs that
resulting in the minimal energy consumption for each
virtual machine. Mohit Kumar et al. [17] proposed an
architecture that acts as a cloud resource broker for
dynamic task scheduling. To improve the optimization
effect, an improved Particle Swarm Optimization (PSO)
method was proposed to optimize not only the energy
consumption, but also the QoS parameters. With the con-
straint of deadline, this method distinctly reduces the
energy consumption based on the results of a simulation
experiment.
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Research on avoidance of datacenter network congestion

M. Bhatu et al. [18] proposed a task scheduling and
resource allocation system to manage virtual machines
and resources. The system uses an analytic hierarchy sys-
tem to assign a rank to each task based on its length
and runtime. Then they implemented a bandwidth-aware
divisible scheduling method to allocate the computing
resources and bandwidth, and a preemption methodology
was proposed to check for overloaded virtual machines.
Finally, the system uses divide-and-conquer methodol-
ogy to break up tasks to solve the overloading problem.
X. Wen et al. [5] investigated virtual machine migra-
tions to alleviate the network congestion problem. They
abstracted the problem into a secondary allocation prob-
lem and proposed Virtual Knotter, an online algorithm,
to alleviate network congestion. The algorithm maintains
low time complexity in the process of reducing the net-
work communication cost. An experiment showed that
the network cost of Virtual Knotter was only 5%-10% of
that of the baseline algorithm. D. Kliazovich et al. [19]
considered the reduction of network power consump-
tion and the maintenance of network performance. They
proposed the DENS algorithm to balance power con-
sumption, the performance of each task, and the commu-
nication correlations to minimize the number of physical
machines used. The algorithm maintains perfect com-
munication correlations to avoid network congestion in
the datacenter. In addition, Mohit Kumar et al. [20, 21]
proposed an architecture to serve as the cloud resource
broker for dynamic task scheduling and load balancing
with elasticity. This architecture manages task assign-
ment and resource provision for each virtual machine.
Based on this architecture, [20] proposed a dynamic
load balancing method to minimize the makespan time,
which increases the QoS of cloud computing. [21] pro-
posed an improved PSO method to optimize multi-
ple QoS parameters. To solve the trade-off problem
for task scheduling, the improved PSO method gener-
ates several schedule plans based on Pareto efficiency
theory.

Research on communication correlations between
application layer virtual machines

X. Meng et al. [22] investigated the problem of virtual
machine migration to a physical machine on the basis of
network perception. Their experiments on datacenters
indicated that the distribution of virtual machines’ traffic
in a datacenter is extremely uneven. Virtual machines
that communicate with each other have high traffic, and
virtual machines with minimal communication have low
traffic. They abstracted the network perception allocation
of virtual machines into an NP-hard optimization prob-
lem and proposed a two-layer approximate algorithm
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to solve this problem. Their experiment showed that
their algorithm can improve network performance and
reduce the network communication costs. D. Jayasinghe
et al. [23] focused on the virtual machine migration
problem with the server’s resource constraints. They pro-
posed a virtual machine migration algorithm to improve
performance and availability of IaaS cloud services.
This algorithm aims to minimize the network traffic
of datacenters by satisfying the resource demands and
availability constraints of physical machines. The authors
also analysed the NP-completeness of this problem and
divided the problem into three NP-completeness opti-
mization problems. First,They abstracted the minization
of the communication cost into a clustering problem,
which is essentially a K-Min-Max-cut problem. Second,
they abstracted the allocation of virtual machine clus-
ters to physical machine sets into a cluster allocation
problem. Third, they abstracted the allocation of each
machine to each physical machine into an allocation
problem. They also proposed four heuristic algorithms
to solve these problems. However, they didn't consider
the limitations in the physical machine’s system resources
(CPU, memory, disk storage, etc.). The resources
that the server provides must be sufficient for the
virtual machine.

To solve this problem, V. Shrivastava et al. [3] con-
sidered the limitations in network communication and
server resources and analysed a situation in which virtual
machines are overloaded. They abstracted a datacenter
into a model that considers the dependencies of the virtual
machines and the topological relationships of the underly-
ing physical machine. They proposed a greedy algorithm
AppAware for selecting a server with the minimum com-
munication cost as the destination physical machine for
each virtual machine migration.

With regard to the research on overloaded virtual
machines, T. Wood et al. [24] proposed Sandpiper to
solve the problem of overloaded virtual machine migra-
tion. Sandpiper includes two algorithms. The first is used
to estimate the virtual machine migration time, and the
second is used to determine the migration method and the
destination physical machine. Sandpiper uses greedy and
heuristic methods to migrate the virtual machine from
the physical machine with the highest overload ratio to
that with the lowest one. Sandpiper is a dynamic virtual
machine migration algorithm that selects one or several
virtual machines from the virtual machine set on the basis
of load variety. However, Sandpiper ignores the cost of
virtual machine migration. H. Liu et al. [11] mentioned
that the data transferred by virtual machine migration are
positively related to the energy consumption. Thus, the
data transferred by virtual machine migration cannot be
ignored.
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Definition of the network-aware virtual machine
migration problem
In 2011, V. Shrivastava et al. [3] proposed Application
Aware, a virtual machine migration strategy. AppAware
gives the basic definition of virtual machine migration
problem as follows.

For the virtual machine migration problem, we should
consider three factors:

1 The communication correlations of VMs and the
network topologies of physical machines. The former
includes the settings of VMs and the communication
relationships between them. The latter includes the
settings of physical machines and network distance
between them.

2 The resource demands of VMs and resource
capacities of physical machines. The former means
the computing resource demands of VMs, such as
CPU, memory and disk storage. The latter means the
quantity of the computing resources.

3 The sizes of VMs, which represent the amount of
network traffic created by the VM migration.

For introducing the virtual machine migration problem
briefly, we use some abbreviations in both mathematical
functions and texts. The detailed abbreviations instruc-
tions are shown in Tables 1 and 2. In a datacenter, the vir-
tual machine set is defined as V = {V1, V5, V3, ..., Vi.},
in which a subset of o number of virtual machines is
defined as O = {V;, V,, V3, , Vo). The phys-
ical machine set is § = {S1, Sy, S3, , Sm}.The
communication correlations between virtual machines
can generate a network topological dependence graph,
G = (V, E), where E represents the set of the
edges of the communication correlations between vir-
tual machines. The definition of E is E = {(Vi, V,) |
Vi and V; have a communication correlation}. W(Vi, V})
represents the communication demand between virtual
machines V; and V;.

Table 1 Abbreviations

Abbreviations Descriptions

VM virtual machine

PM physical machine

VMIG Virtual Machine Migration

LM LocalSearch for minimum cost

mCaM Min-Communication andMigration Cost
PSO Particle Swarm Optimization

AppAware Application-aware

BRITE Boston universityRepresentative Internet Topology

gEnerator

(2020) 9:43 Page 50f 16
Table 2 Symbols
Symbols Descriptions
v The set of virtual machines
S The set of physical machines
Vi A virtual machine
Si A physical machine
G Network topological dependence graph of virtual
machines
E Communication correlations between vitual
machines
Load Resource demand of virtual machines
Capacity Resource capacity of physical machines
Cost Communication cost of a pair of virtual machines
Distance, D Delay of hops between physical machines
w Communication demand of virtual machines
X Decision variables of virtual machines distribution
Cost_Com Communication cost of virtual machines

Cost_Com_std ~ Normalized communication cost of virtual machines

Size Size of virtual machines

Cost_Mig Migration cost of virtual machine migrations

Cost_Mig_std Normalized migration cost of virtual machine
migrations

Cost_Total Total cost of virtual machine migrations, which is

weighted sum of the communication

cost and the migration cost.

Next is the definition of virtual machine resource
demand and physical machine source. Load (V;) is the
resource demand of virtual machine V;, and Capacity(S;)
represents the CPU, memory, and disk storage capac-
ity of physical machine S;. The migration cost of vir-
tual machine V; from physical machine S; to physical
machines S; is Cost (W,Sk, Vi, Sl) = Distance (S, S;) x
w (W, V,), where virtual machines V; and V; have com-
munication demand W (Vi, V]) and Distance (Sg, S;) rep-
resents the delay or hops between Sy and S;.

To describe the relationship between virtual machines
and physical machines, Xj; indicates whether virtual
machine V; is distributed to physical machine Sg. If so,
then Xj; is equal to 1; otherwise, Xj is 0. Similarly,
Xf,i = Xj * Xj indicates whether virtual machines V;
and V; are distributed to physical machines S; and S;.
If the distribution exists, Xf]i = 1; otherwise, it is equal
to 0.

On the basis of these definitions, the total communica-
tion cost of a datacenter is expressed as

Z Cost (Vi Sk» Vj» Si) % Xf/i )
A
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where A = {(G,j, k1 | i< j, k<L j<|V],I<|SD}
Meanwhile, the constraints of the problem are expressed
as follows:

S|

Y X =1VV;e0 2)
k

Vi

> " Load; x Xy < Capacity,¥Si € S 3)

14

Condition (2) indicates that every virtual machine must
be allocated to a specific physical machine. Condition (3)
indicates that the summation of the resource demands of
the virtual machines in each physical machine must be
lower than the amount of resources the physical machine
provides.

In addition, AppAware presumes that the communica-
tion correlations between virtual machines is fixed. Thus,
AppAware’s optimization objective function is

Minimize Y Cost (Vi, Sg, V;, S1) # Xy (4)
A

To simplify this problem, we presume that the allocation
of underloaded virtual machines to physical machines is
fixed. Thus, the allocation of underloaded virtual machine
Vi to physical machine Sy is represented by x;, which is
defined as

Xik = (o (5)

For convenience of description, we call the virtual
machine migration problem VMIG. The virtual machine
is called VM, and the physical machine is called PM.

Improvement of the problem model

Communication cost model

In our work, the communication cost still follows the defi-
nition in (1). Here, we use Cost_Com to represent the total
communication cost in the datacenter.

Cost_Com =Y . Cost (Vi, S, V;» S1) x X}y ©6)

A

As the calculations of the communication cost and
migration cost are totally different, the dimensions of
these two costs are also different, which unbalances the
influences of these two costs to the total cost. To eliminate
this unbalance, we need to make sure the values of these
two costs in objective function are in the same order of
magnitude. Tiwari et al. [25], Zhao et al. [26], to increase
the models’ extensibility and adaptability and consider
the migration cost in the objective function, we normal-
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ize the communication cost to a value between 0—1. The
normalized communication cost is

il
§ Cost (Vi Sk» Vj, S1) x Xy

er x max (W;) max (D I
opoy ijeV ( U) k,leS ( K )
(; )

where erypo_ym represents the number of VM pairs that
are communicating with each other in the datacenter.
It also represents the total number of edges in the net-
work topological dependence graph. Given that each
pair of VMs that communicate with each other corre-
sponds to a Cost (Vi, Sk VjSl), we use the communication
cost divided by the number of VM pairs that commu-
nicate with each other, the maximum VM communica-

Cost_Com_std =

tion demand (max(W/Lj)) and the maximum distance

ijeV
max (Dy;) between PMs, in which Dy, is Distance (S, S;)
kleS

and Wy is W (V;, V)).

Migration cost model

We define the migration cost as the product of the amount
of VM migration data and the distance between the source
and destination PMs. The VM is essentially a software
container. It packages a complete set of virtual hardwares
and softwares that includes the operating system and all
applications. During VM migration, the migration oper-
ation is similar to the transfer and duplication of other
software files. Therefore, the VM migration cost is related
to the VM size, which is called Size. The function of the
migration cost of VM V; from §; is

Cost_Mig(V;) =y _ Size; x Dy x Xig 8)
keS

where §; is the physical machine where the overloaded
VM V; initially located. For an overloaded VM that needs
to be reallocated, if Xjx = 1, then VM V; will migrate to Sk.

The function of the total migration cost of a datacenter
is

Cost_Mig = Z Z Size; x Dy x Xjxe 9)
i€O keS

As the communication cost need to be normalized, the
migration cost also need to be normalized to the same
order of magnitude with the communication cost. To
increase the models’ extensibility and adaptability, we also
normalize the migration cost. The normalized value will
be used in the improvement of the objective function. The
normalized migration cost is

Z Z Size; X Dy x Xjx
i€0 keO (10)
N, x max(Size;) max(Dy)
€0 LkeS

Cost_Mig_std =
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where m%x(Sizei) is the maximum size of all VMs, and

Np = |(l§|, which is the number of VMs in the overloaded
PM. The migration strategy addresses the migration of
these overloaded VMs. Thus, the number of migrated
VMs following the selection of the migration strategy
should be lower than Np. The total migration cost gener-
ated by redeploying VMs onto these PMs is N orders of
magnitude.

Improvement of the objective function

Next is the definition of the new objective function for this
problem. The total cost, Cost_Total, is the weighted sum
of the communication cost and the migration cost. This
both enables our algorithm to estimate the network cost
close to reality and ensures the extensibility and adaptabil-
ity of the algorithm. We use the weight coefficients, & and
B (which must sum to 1) to adjust the effect of these two
factors in the optimization objective function.

Cost_Total = o x Cost_Com_std + B x Cost_Mig_std
(11)

These two coefficients can balance the optimization of
the communication cost and the migration cost effec-
tively. The administrators of datacenters can adjust these
two coefficients based on the network condition to have
different optimization of the communication cost and
the migration cost. In the following experiment, we set
0.7 and B = 0.3. With these coefficient values,
the performance of our proposed algorithms in simulated
datacenters with different number of virtual machines is
best in our experiments. We also finished the experi-
ment in “Experiment” section to find the most appropriate
coefficient values with the best optimization of the total
cost.

o =

Optimization of the virtual machine dynamic
migration algorithm

Procedure of the dynamic migration algorithm

Initially, we provide the definition of an overloaded PM.
For a PM S, if the sum of the VM resource demands
(Load) is larger than the sum of available resources
(Capacity), S will be referred to an overloaded PM. And
the VMs on it are referred to overloaded VMs. Several of
the VMs on overloaded PMs need to be migrated based
on a migration algorithm, thus making the PMs under-
loaded. Following is the general procedure of the dynamic
migration algorithm.

Direct optimization

Direct optimization refers to the optimization of the total
cost, which is expressed as (11). We use a greedy strategy
to migrate the overloaded VM with the minimum total
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Algorithm 1 General procedure of dynamic migration

Input: Sy, an overloaded PM; VMList, a set of VMs on

the PM;

Output: AllocationList that consists of every Vi, that
must be migrated and S, the destination PM
of the migration;

1. VMList <— getVMList(Serc)
v
2: while ‘ZlLoadi X Xisre > Capacityg, do

L
3 (Vmig, Sdest) < Call VM-PM-Choose(S)
4. if S5t # Sgrc then
5 Add (Viuig» Sdest) to AllocationList
6: Xmigsre < 0, Xmigdest «~1
7. end if
8: end while
9: return AllocationList

cost Cost_Total, which guarantees that the total cost of the
datacenter is also minimal.

Based on the direct optimization method, we propose
the local search for min-cost algorithm (LM) to optimize
the datacenter performance. For each overloaded VM V;,
LM calculates the total cost to all the PMs and selects the
destination PM with the lowest total cost, Cost (V;, Sk). By
minimizing each VM migration total cost, the total cost of
the datacenter can be made as low as possible.

Indicated below are the functions of communication
cost and migration cost of VM V; to PM Sy, which is
Cost_Com (V;, S) and Cost_Mig (Vi, Si).

> Cost (Vi, Sk Vi, Sl) xX{,i
VieTW (Vi)

ost_Com (V;, Sk) I TW (V)| x mAax(COSt)

(12)

Size; X Dy x Xk

Cost_Mig (Vi, Sy) = (13)

max(Size;) max(Dy)
€O LkeS

where |TW (V)| represents the number of VMs that com-
municate with V;, such as V; on the PM §;. m%x(Sizei) is
e

the maximum Size, and ?rll(ax(dk) is the maximum Distance
keS

in the PM topological structure.

According to Functions (12) and (13), Cost_Total(V},
Sk) is the weighted summation of these two costs. The
detailed function is expressed as follows

Cost_Total (V;, S;) = a x Cost_Com (V;, Sy)

, (14)
+8 x Cost_Mig (V;, Sk)

On the basis of these functions, the LM algorithm is
designed as shown below.
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Algorithm 2 LM (LocalSearch for min-cost)

Input: Sg., an overloaded PM; VMList, a set of VMs on

the PM
Output: (Vmig,Sdest): VM Ve will migrate from PM

Ssre to the destination PM S ;.

Cost[1,2,...,|V|]: Minimum costs of the VMs in
VMList
Des[1,2,...,|V]|]: Destination PMs of the VMs in
VMList

1: Costyiy < 00
2. for V; € VMList do
3:  if Check_PM_Constraints (V,», Sj) = True then

4 break

5: end if

6: Cost; < o0

7. forS; € Sdo

8: Costynp < Compute_Impact (V;, S))
9: if Costyp < Cost; then

10: Cost; < Costyyp

11: Des; < S]‘

12: end if

13:  end for
14:  if Cost; < Costyp&&Des; # Sgrc then

15: Costyin < Cost;
16: Vmig <~V

17: Sjest < Des;

18:  endif

19: end for

20: return (Vmigy Sdest)

The time complexity of LM is o(m - n), where m is
the number of VMs on PM S,, and # is the number of
PMs. Compared with AppAware, the advantages of the
LM algorithm mainly lie in two aspects. The first aspect
is the migration object. AppAware migrates all the over-
loaded VMs at once. By contrast, LM only migrates a small
number of the VMs and makes the overloaded PM’s capac-
ity just larger than the sum of the load. The second aspect
is the optimization effect of the network cost. AppAware
only consider the VM communication cost, but the LM
considers the optimization of both the communication
cost and the migration cost.

Difference value optimization
LM optimizes the total network cost with the communi-
cation cost and migration cost, that is

min(Cost_Total) < min(« - Cost_Com

, (15)
+p - Cost_Mig)

Before VM migration, the set of VMs has an unrea-
sonable original allocation plan within the set of PMs.
According to Function (4), the allocation plan corre-
sponds to a communication cost Cy. Based on the VM
migration algorithm, overloaded VMs are migrated and a
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new VM allocation plan is generated with a communica-
tion cost called C. In theory, the purpose of VM migration
is to minimize communication costs and migration costs.
Specifically, the algorithm should maximize the difference
in the communication cost, AC = Cy — C, and minimize
the migration cost, Cost_Mig.

After importing AC, the optimization object becomes
min(e - Cp — « - C + B - Cost_Mig). Here, we define the
new optimization objective function as

max(« - AC — BCost_Mig) (16)

We define the new optimization objective function as
the network benefit, Benefit.

Benefit = o - AC — B - Cost_Mig (17)

In the new optimization objective function, the network
benefit, Benefit (V;, Sk), is expected to be the maximum
for each VM migration. This is essentially different from

LM, whose object is the minimization of the communica-
tion cost and migration cost for each migration.

Algorithm mCaM
mCaM imports the prediction mechanism in LM. Initially,
mCaM finds the overloaded PM S, based on the general
procedure. Then, mCaM finds the overloaded VM migra-
tion with the maximum network benefit. In detail, mCaM
calculates the minimum Cost_Total (V;, Sx) for migrating
each VM V; to PM Si. Then, mCaM calculates the net-
work benefit Benefit (V;, Sg) for all the overloaded VMs
and migrates VM V; with the maximum network benefit
to the destination PM S;.

Below is the detailed pseudocode of mCaM.

mCaM can ensure that the migrated VM V; has the
highest possibility of reducing the communication cost.
The time complexity of this algorithm is o(m - n), where m
is the number of VMs on PM S,,, and # is the number of
PMs.

Algorithm mCaM2
Now we analyse the network benefit of each VM migra-
tion. mCaM migrates the VM with the maximum network
benefit to the PM with the minimum total cost, until all
PMs become underloaded. However, mCaM may never
migrate those VMs with both high network benefit and
high migration cost. For the datacenters with high com-
munication costs, mCaM can only optimize the VMs that
have low migration cost, which has a limited optimization
on the communication performance. Here, we propose
mCaM?2 to solve this problem.

First, we describe the optimization objective of mCaM2.
We define the reduction of communication cost as com-
munication benefit, Benefit_Com = AC. To describe the
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Algorithm 3 mCaM (Min-Communication and Migra-
tion Cost)

Algorithm 4 mCaM2 (Min-Communication and Migra-
tion Cost)

Input: Sy, an overloaded PM; VMList, a set of VMs on

the PM
Output: (Viig, Saest): VM Vyyig will migrate from PM

Ssre to destination PM S,,;.
Cost[1,2,...,|V|]: Minimum costs of the VMs in

VMList
Benefit[1,2,...,|V|]: Maximum network benefits of
the VMs in VMList
Des[1,2,...,|V]|]: Destination PMs of the VMs in
VMList

1. Benefityqx < 0

2: for V; € VMList do

3:  if Check_PM_Constraints (V,-,Sj) = True then

4: break

5. endif

6:  Benefit; < 0

7: Cost; < o0

8: forS; € Sdo

9: Costyny < Compute_Impact (Vi,S/)
10: if Costyp < Cost; then

11: Cost; < Costyyy

12: Des; < S]‘

13: end if

14:  end for
15:  Benefit; < a x Cost_Com (V}, S,) — B x Cost;
16:  if Benefit; > Benefit,q, then

17: Benefityq; < Benefit;
18: le'g <~ V;

19: Sqest < Des;

20: end if

21: end for

22: return (Viig, Sdest)

benefit of the migration, we define the optimization object
as Benefit_Ratio, which is

Benefit_Com (V;, Sg)

Benefit_Ratio(V;) = Cost_Mig (Vi, Sp)
_ i

(18)

Second, we describe the migration strategy of mCaM2.
mCaM2 divides the optimization into two periods. In the
first period, mCaM2 optimizes the communication cost.
It calculates the communication benefit Benefit_Com for
all overloaded VMs to all PMs. For each VM, mCaM2
selects the PM with maximum communication benefit as
the destination PM. In the second period, mCaM2 opti-
mizes the migration cost. mCaM2 calculates the benefit
ratio Benefit_Ratio for each overloaded VM and migrates
the VM with the maximum benefit ratio, until all PM
become underloaded.

The time complexity of mCaM2 is o(m - n), where m is
the number of VMs on PM S,,, and # is the number of PMs.
The operation process of mCaM2 is shown below.

Input: Sg., an overloaded PM; VMList, a set of VMs on

the PM
Output: (Viuig, Saest): VM Viig will migrate from PM

Ssre to destination PM S ;.
Benefit_Com|[1,2,...,|V]|]: Maximum
communication benefits of the VMs in VMList
Benefit_Ratio[ 1,2, ...,|V]|]: Benefit ratios of the VMs
in VMList
Des[1,2,...
VMList

1: Benefit_Ratioy x < 0

2: for V; € VMList do

3:  if Check_PM_Constraints (V,', Sj) = True then
4 break

5: end if

6:  Benefit; < 0
7

8

9

,1V1]]: Destination PM of the VMs in

Benefit_Com; < 0

for S; € Sdo
: Beneﬁt_Comtmp <« Compute_Impact (V,»,S,-)
10: if Benefit_Comyy, < Benefit_Com; then
11: Cost; < Benefit_Comyyy
12: Des; < §;
13: end if

14 end for
. . . Benefit_Com(V;,Sy)
15:  Benefit_Ratio; < oSt MR (VS0

16:  if Benefit_Ratio; > Benefit_Ratio,,, then

17: Benefit_Ratio,,, < Benefit_Ratio;
18: Vmig <~ V;

19: Sjest < Des;

20:  endif

21: end for

22: retarn (Viuig, Sdest)

Experiment

Introduction of the experimental environment

We tested our algorithms in an environment, that sim-
ulates a datacenter with multilayer virtual machines. For
the VM communication correlations, we use the Boston
University Representative Internet Topology Generator
(BRITE) to generate the bandwidth dependence relation-
ship between VMs. For the topology of the PMs, we used a
topological generation algorithm to generate a tree struc-
ture. The experiment was executed on an Ubuntu Server
11.04, and each server is a Sugon blade server that has an
octuple core CPU (two Intel Xeon E5506 2.13GHz 8) and
16 GB 1333 MHz memory.

BRITE generation of the bandwidth dependence relationship
between VMs

BRITE [27] is a general network topology generator built
by Alberto Medina et al. at Boston University. Through
BRITE, we can simulate the topological structure, such
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as the hierarchical model, and the communication depen-
dence distribution of the simulated network topology.
In addition, BRITE can also use some network mod-
els to generate simulated network topologies, such as
Router Waxman and Router BarabasiAlert. Given that the
VMs we consider are locally homogenous, we only need
to use the generation function of the LAN topology in
BRITE.

Physical topology structure

In the present datacenters, the network topology usually
extends from triple-layer network structure [22]. In the
bottom layer, every PM connects to one (or two) access
switch. In the aggregation layer, the access switch con-
nects to one or two switches, and every aggregation layer
switch connects to multiple core layer switches. We call
this structure a tree structure. The aggregation layer is
usually a tree structure, and the root node is located in the
core layer. If this triple-layer network structure is a multi-
tree structure, the data package will be transferred based
on the aggregation layer VLAN and the maximum weight
spanning tree.

Algorithm experiment

Algorithm parameter configuration

With different numbers of VMs and workloads, we fin-
ish the VM migration algorithm simulation. We compared
the performance of AppAware, LM, mCaM and mCaM?2
in the simulated environment. In our experiments, the
VM overload ratio is 0.4, which indicates the ratio of over-
loaded VM set O in VM set V. The distributions of VM
size, VM load and PM capacity are normal distribution.
The average VM size is 0.4GB with a variance of 0.2, the
average VM resource demands is 0.4GB with a variance of
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0.1, and the average PM capacity is 0.8GB with a variance
of 0.2. The bandwidth dependence relationship between
VMs is generated by BRITE automatically, and includes
the weight parameter W. The number of VM is change
from 60 to 200 in steps of 20, and the number of PMs is
100. The following experiment results are the average of
10 operations.

Weight coefficient in the dynamic migration objective
function

For these migration algorithms, the weight coefficients
o and B are vital to the optimization effect. The weight
coefficient can effectively balance the optimization of
communication cost and migration cost. Therefore, we
need to find the appropriate weight coefficient values.
Given that the value of the objective function reflects the
effect of migration, the difference between maximum and
minimum needs to be as small as possible. Here, we use
different values of a(from 0.0 to 1.0 in steps of 0.1) to
calculate the total cost for the VMs (the number of VMs
increased from 60 to 200 in steps of 20). To obtain a better
weight coefficient value conveniently, we calculate the dif-
ferences between the maximum and minimum total costs
in the weight coefficient experiments, and the result is
shown in Fig. 1, which describes the performance of each
weight coefficient.

As shown in Fig. 1, when o = 0.7, the total cost of
the VIMG experiment has a minimum different value of
0.014733, in which the maximum value is 0.390296 from
100 VM application requests, and the minimum value is
0.379792 from 80 VM application requests. According to
the results of the simulation experiment, the weight coef-
ficients in the VMIG model are set toa = 0.7,and 8 = 0.3
in the following experiment.

0.06 -

0.05

0.04

0.03

Cost Total

0.02

0.01

Fig. 1 Difference value weight factor adjustment

Alpha
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Table 3 Object function values

(2020) 9:43 Page 11 0of 16

Number of VMs

Algorithm 60 80 100 120 140 160 200
LM 0.366 0.359 0403 0.392 0.395 0.409 0.397
mCaM 0.364 0.352 0.395 0.383 0.388 0401 0.389
mCaM2 0417 0.392 0439 0417 0422 0422 0400

Optimization algorithm performance comparison

Based on appropriate weight coefficients, we compared
the total cost of each algorithm, including LM, mCaM and
mCaM2. The detailed data are shown in Table 3 and Fig. 2.

As shown in Table 3 and Fig. 2, mCaM has the mini-
mum total cost among the three algorithms. This indicates
that mCaM has better optimization for datacenter and
has lowest migration cost in the VMIG. Given that LM
directly optimizes the total cost for each VM migration,
it only migrates VMs with high communication costs to
PMs with low migration costs, which ignores the commu-
nication cost history information of VMs in the original
network. Therefore, LM may never migrate VMs that have
high communication cost, resulting in a limited optimiza-
tion of the total cost.

However, mCaM changes the form of the objective func-
tion. In the algorithm process, mCaM focuses on the
network benefit to primarily optimize the communica-
tion performance. To have a better optimization, mCaM
calculates the network benefits for each overloaded VM
and migrates the VM with the maximum network benefit.
Therefore, mCaM solves the limitations of LM. It maxi-
mizes the migration performance benefit and has a lower
total cost after optimization.

mCaM2 considers the reduction of communication cost
after migration to maximize the network performance.
mCaM?2 separates the optimization into two periods:
the selection of destination PM and the selection of

migration VM. In the selection of the destination PM,
only the reduction of communication cost is considered.
Migration cost is considered in the selection of migration
VM. It exerts a negative influence on the migration cost
and increases the total cost. Therefore, the total cost of
mCaM2 is higher than the other two algorithms.

To compare the communication cost and migration
cost optimization effect, we also analysed the communi-
cation cost and the migration cost of these three algo-
rithms. Figures 3 and 4 show the detailed communication
cost and migration cost values with different numbers of
VMs.

Figure 3 shows that mCaM2 has the best communi-
cation cost optimization performance among the three
algorithms, followed by mCaM. LM directly optimizes the
total cost. In every VM migration, LM only focuses on
the communication cost after VM migration and never
considers the communication cost before migration.

In the migration VM selection, mCaM considers the
VM cost information in the original network and migrates
the VM with the greatest network benefit. Therefore, it
has a better communication cost optimization than LM.
mCaM2 considers the costs separately in different peri-
ods. In the destination PM selection period, mCaM2 only
considers the optimization of the communication cost.
It ensures that the communication cost can reduce as
much as possible. Therefore, mCaM2 has the minimum
communication cost.

0.44 -
LM
0.42 mCaM
mCaM2
=
2 04+
H
7
S
o
0.38 -
0.36 -
L L L L L L L I}
60 80 100 120 140 160 180 200 220
n
Fig. 2 Comparison of objective function values
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As shown in Fig. 4, LM has the smallest migration
cost, followed by mCaM, but the difference is small.
Given that the destination PM selection strategy ignores
migration cost, mCaM2 has the largest migration cost. In
conclusion, mCaM has the highest network optimization
performance in terms of both communication cost and
migration cost among the three algorithms. mCaM2 opti-
mizes communication costs at most, but the migration
cost of it is higher than that of mCaM. LM has the lowest
migration cost, but the optimization in communication
costs is the highest among the three algorithms.

Comparison with AppAware in terms of performance
We also compared the total cost of mCaM with that of
AppAware. We list the statistical results in total cost in
Table 4 and Fig. 5.

Figure 5 shows that mCaM’s total cost reduces sharply
compared with that of AppAware, and Table 4 shows that

mCaM has a 20% lower total cost than AppAware on
average. Given that AppAware only optimizes the com-
munication cost and ignores the migration cost, the result
satisfies our expectations.

Figure 6 shows the experimental results for AppAware
and mCaM in terms of communication cost. As shown
in this figure, given that AppAware only aims to optimize
the communication cost, AppAware performs better than
mCaM.

Next, we analysed performance in terms of the migra-
tion cost. Figure 7 presents the statistical results of these
two algorithms in the simulation experiment.

The bar graph in Fig. 7 represents the number of
migrations made by the two algorithms. The curves
in Fig. 7 represent the corresponding migration costs.
Evidently, mCaM has a much lower migration cost
than AppAware, and its number of migrations is also
smaller than that of AppAware by approximately 50%.

04 -

0.35 -

1=
w
T

Cost Com
S
[\ )
]

=4
8
T

0.15 -

0.1 ‘ ‘ ‘

————mCaM
mCaM2

60 80 100 120
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Table 4 Comparison of total costs
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Number of VMs

Algorithm 60 120 140 160 200
AppAware 0482 0476 0.490 0480 0.431
mCaM 0.364 0.383 0.388 0401 0.389
Improvement 24.48% 19.54% 20.82% 16.46% 9.74%
over AppAware
05
048
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H
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Fig. 5 Comparison of total network costs
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mCaM fully considers the influence of migration cost
and uses the lowest migration cost to obtain the largest
network benefit. AppAware only optimizes the communi-
cation traffic and directly migrates all VMs on the over-
loaded PM, which easily generates frequent VM migra-
tion. The curve of the number of migrations proves this
point. Finally, we compare the operation times of these
two algorithms. LM, mCaM and mCaM2 have the same
time complexity. Therefore, LM, mCaM and mCaM?2
has the similar operation times, and we only compared
the operation times between mCaM and AppAware. The
detailed data are shown in Fig. 8.

As shown in Fig. 8, mCaM exhibits a clear improve-
ment in operation time compared with AppAware by 70%
on average. AppAware migrates all the VMs on the over-
loaded PM. However, mCaM only migrates some of the
overloaded VMs in order to just make the PM under-
loaded. Therefore, mCaM has a much smaller operation
time. Furthermore, mCaM considers the balance between
migration cost and network benefit. Therefore, mCaM
migrates the VM with the highest benefit, which also
decreases the operation time. In conclusion, the advan-
tages of mCaM in operation time increase with the num-
ber of VMs and the scale of the problem.
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Conclusion

In this paper, we focus on the network traffic created
by the VM migrations, which profoundly limit the per-
formance of the datacenters. To solve this problem, we
propose three heuristics VM migration algorithms, LM,
mCaM and mCaM2, to balance the optimization effect
of communication cost and migration cost. The simula-
tion experiments demonstrate that it efficiently decreases
network traffic of the datacenters by 20% comparing
with AppAware. And our algorithms also outperform
AppAware in terms of operation time by 70% on aver-
age. Our simulation results show that the proposed algo-
rithms can effectively decrease the energy consumption
in the cloud-edge fusion computing environment. One
promising future direction is to implement and evaluate
our algorithms on a real cloud-edge fusion computing
environment.
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