
Journal of Cloud Computing:
Advances, Systems and Applications

Tomarchio et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:49
https://doi.org/10.1186/s13677-020-00194-7

RESEARCH Open Access

Cloud resource orchestration in the
multi-cloud landscape: a systematic review
of existing frameworks
Orazio Tomarchio†* , Domenico Calcaterra† and Giuseppe Di Modica†

Abstract

The number of both service providers operating in the cloud market and customers consuming cloud-based services
is constantly increasing, proving that the cloud computing paradigm has successfully delivered its potential.
Nevertheless, the unceasing growth of the cloud market is posing hard challenges on its participants. On the provider
side, the capability of orchestrating resources in order to maximise profits without failing customers’ expectations is a
matter of concern. On the customer side, the efficient resource selection from a plethora of similar services advertised
by a multitude of providers is an open question. In such a multi-cloud landscape, several research initiatives advocate
the employment of software frameworks (namely, cloud resource orchestration frameworks - CROFs) capable of
orchestrating the heterogeneous resources offered by a multitude of cloud providers in a way that best suits the
customer’s need. The objective of this paper is to provide the reader with a systematic review and comparison of the
most relevant CROFs found in the literature, as well as to highlight the multi-cloud computing open issues that need
to be addressed by the research community in the near future.

Keywords: Cloud computing, Cloud resource orchestration, Multi-cloud, Cloud interoperability, Interconnected
clouds, Cloud brokerage

Introduction
Over the last few years, cloud computing has established
itself as a new model of distributed computing by offering
complex hardware and software services in very differ-
ent fields. As reported in the RightScale 2019 State of
the Cloud Report [1], many companies and organisations
have successfully adopted the cloud computing paradigm
worldwide, while more and more are approaching it as
they see a real opportunity to grow their business. Accord-
ing to that report, 94 percent of IT professionals surveyed
said their companies are using cloud computing services,
and 91 percent are using the public cloud. Organisations
leverage almost 5 clouds on average, and companies are

*Correspondence: orazio.tomarchio@unict.it
†Orazio Tomarchio, Domenico Calcaterra and Giuseppe Di Modica
contributed equally to this work.
Department of Electrical, Electronic and Computer Engineering, University of
Catania, Catania, Italy

running about 40 percent of their workloads in the cloud.
The enterprise cloud spend is growing quickly as com-
panies plan to spend 24 percent more on public cloud in
2019 vs. 2018.
The competition between cloud providers is getting

stronger in order to acquire increasing market shares: a
key point to optimise resource usage and fully exploit
the potential of cloud computing is the issue of resource
orchestration [2]. Cloud resource orchestration regards
complex operations such as selection, deployment, mon-
itoring, and run-time control of resources. The overall
goal of orchestration is to guarantee full and seamless
delivery of applications by meeting Quality of Service
(QoS) goals of both cloud application owners and cloud
resource providers. Resource orchestration is considered
to be a challenging activity because of the scale dimen-
sion that resources have reached, and the proliferation

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00194-7&domain=pdf
http://orcid.org/0000-0003-4653-0480
mailto: orazio.tomarchio@unict.it
http://creativecommons.org/licenses/by/4.0/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 2 of 24

of heterogeneous cloud providers offering resources at
different levels of the cloud stack.
Cloud Resource Orchestration Frameworks (CROFs)

have emerged as systems to manage the resource life-
cycle, from the selection phase to the monitoring one
[2–4]. Today most of commercial cloud providers offer a
cloud orchestration platform to end-users [5]: however,
these products are proprietary and, for obvious business
reasons, are not portable. In addition, although modern
configuration management solutions exist (e.g., Amazon
OpsWorks, Ansible, Puppet, Chef) that provide support
for handling resource configuration over cloud services,
all potential users (ranging from professional program-
mers and system administrators to non-expert end-users)
are often required to understand various low-level cloud
service APIs and procedural programming constructs in
order to create and maintain complex resource configura-
tions.
The advent of the multi-cloud computing further exac-

erbates the already challenging orchestration issues. The
multi-cloud paradigm is a very recent technological trend
within the cloud computing landscape, which revolves
around the opportunity of taking advantage of services
and resources provided by multiple clouds [6, 7]. Multi-
cloud presumes there is no a priori agreement between
cloud providers, and a third party is responsible for the
services. That is the case for Cloud brokerage scenarios,
where a broker intermediates between cloud providers
and cloud consumers [8]. In order to enable an effec-
tive multi-cloud paradigm, it is essential to guarantee an
easy portability of applications among cloud providers
[9, 10]. This new requirement calls for more powerful
resource orchestration mechanisms cross-cutting multi-
ple cloud administrative domains, i.e., capable of dealing
with the heterogeneity of the underlying cloud resources
and services.
This work explores the many issues of resource orches-

tration in the cloud landscape. A review of existing works
in the addressed field is conducted in order to identify the
challenges that havemostly attracted researchers in recent
years, and highlight the aspects that have not been fully
covered yet. Themain contribution of our work is twofold.
Firstly, by deeply analysing recently appeared literature,
we build a comprehensive taxonomy of desirable features
and dimensions useful to characterise CROFs. Then, in
accordance with the identified features, we compare sev-
eral CROFs from both industry and academia. This will
help the reader not only to understand the strengths of
each framework, but also to identify the unsolved chal-
lenges that have to be addressed in the near future.
The remainder of the paper is organised as follows.

In “Research methodology” section the methodology fol-
lowed in our study is described. “Related surveys” section
presents a survey of existing works related to our study.

In “Analysis framework” section we identify the CROF
capabilities which have been used to carry out the review
presented in “Review of cROFs” section. In “Critical dis
cussion” section we summarise the results of the review,
emphasising current limitations and open challenges.
Finally, “Conclusion” section concludes our work.

Researchmethodology
The primary motivation of this study is to shed light on
the recent advances that both industry and academia have
made in facing the cloud resource orchestration’s issues in
the multi-cloud landscape.
With this aim in mind, we identified the fields rele-

vant to our study in order to clearly frame the research
scope. Beyond the quite expected cloud resource orches-
tration topic, the following macro topics were also inves-
tigated: cloud interoperability, cloud brokerage, intercon-
nected clouds. As outlined in “Introduction” section, cloud
resource orchestration deals with the discovery, selection,
allocation, and management of cloud resources. When
multiple clouds are in place, cloud brokering and interop-
erability issues due to the simultaneous access to hetero-
geneous services of interconnected providers cannot be
neglected in the analysis of cloud resource orchestration.
We surveyed the literature recently produced in the

mentioned fields. Specifically, we sought for proposals,
frameworks, prototypes, commercial products somehow
addressing the above discussed issues. The databases
taken into consideration in this survey are the follow-
ing: Scopus1, ACM Digital Library2, IEEE Xplore Digital
Library3, Elsevier ScienceDirect4, and SpringerLink5. We
also took care of filtering out research items that are dated
earlier than the last decade.
We found out that many researchers have already pub-

lished surveys that are relevant to our object of study.
Each of these surveys lists and classifies, under differ-
ent perspectives, numerous initiatives taken under the
big umbrella of the cloud resource orchestration field, be
them fully-fledged CROFs or minor proposals focusing
just on a restricted set of orchestration features. The pri-
mary objective of the study proposed in this work is to
provide a new, unified analysis of the existing initiatives,
which embraces all the analysis perspectives proposed
by the past surveys and eventually identifies the missing
ones.
Therefore, as shown in Fig. 1, the first step of our study

consisted in reviewing the literature surveys with the aim
of a) consolidating the list of CROFs and, in general, pro-
posals on which to run a qualitative comparative analysis,

1http://www.scopus.com/
2https://dl.acm.org/
3http://ieeexplore.ieee.org/
4https://www.sciencedirect.com/
5https://link.springer.com/

http://www.scopus.com/
https://dl.acm.org/
http://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://link.springer.com/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 3 of 24

Fig. 1 Research methodology steps

b) extracting the analysis dimensions addressed in each
survey. Then, the second step was to elaborate an analy-
sis framework in order to provide a more comprehensive
set of features on which a new comparison step would
be run. Next, following the references found in the sur-
veys, each CROF on the list was further revised according
to the above-mentioned comparative guidelines, and the
output of the analysis was eventually gathered in a syn-
optic table, helping the reader to compare the different
features. Finally, the comparison results were the basis for
a critical discussion on the state of the art, open challenges
and future expectations on CROFs.

Related surveys
This section presents the results of a literature survey
we conducted in order to identify published studies that
relate to our work to varying degrees. Specifically, we
investigated the vast area of cloud computing searching
for proposals and initiatives falling under the theme cloud
resource orchestration in the multi-cloud landscape.
Of particular importance in the context of the discus-

sion were the following works: Inter-cloud Challenges,
Expectations and Issues Cluster position paper [11], and
the Manifesto for Future Generation Cloud Comput-
ing [12]. Both works acknowledged resource provisioning
and orchestration as an open challenge. In [11], Fer-
rer et al. recognised it as a research area with a high
business impact in the medium term. Besides, in light
of more and more heterogeneous cloud resources dis-
tributed across diverse cloud typologies and models, both
studies stressed the importance of investigating related
research areas, such as cloud interoperability and porta-
bility, service discovery and composition (i.e., cloud bro-
kerage), and interconnected clouds. The relationship of
these related research areas with the main topic of this
survey are schematically depicted in Fig. 2. We depicted
the multi-cloud resource orchestration research scope as
a big umbrella fully covering the cloud resource orchestra-
tion research area, and partially sharing themes covered
by the cloud brokerage, inter-clouds and cloud interoper-
ability/portability research fields.
We remark that the study conducted in this first inves-

tigative step did not intend to seek for actual proposals
and initiatives in the focused fields. Instead, it targeted

the literature works proposing themselves surveys of the
most relevant proposals (step 1 in Fig. 1). Here, the aim
is to highlight the limits of existing literature surveys and,
thus, to provide a motivation to our work. Also, by “sur-
veying existing literature surveys” we were able to collect
the pointers to the actual research proposals, which were
the object of investigation in the next steps of our study.
Below, we discuss some of the most representative liter-

ature surveys broken down into the four above-mentioned
cloud sub-topics. In each of the following sections the sub-
topic is briefly introduced, and the aspects relevant to the
multi-cloud orchestration topic are pointed out.

Cloud interoperability
The cloud computing community typically uses the term
interoperability to refer to the ability of easily moving
workloads and data from one cloud provider to another or
between private and public clouds [13]. Ten years ago, the
standardisation bodies NIST [14], OMG [15] and DMTF
[16] developed, among others, several use cases related
to cloud interoperability. All the bodies, independently of
each other, defined a common umbrella of interoperabil-
ity use cases covering topics such as user authentication,
workload migration, data migration and workload man-
agement.
In [17], the authors performed a comprehensive survey

on cloud interoperability, with a focus on interoperability
among different IaaS cloud platforms. They investigated
the existing efforts on taxonomies and standardisation of
cloud interoperability, and identified some open issues to
advance the research topic as well. Nevertheless, the pre-
sented solutions and concepts are mainly focused on IaaS
interoperability.
In [18], the authors did their survey on service interop-

erability and portability on cloud systems with respect to
cloud computing service discovery. Still, other interoper-
ability approaches such as the Model Driven Engineering
(MDE) and open solutions were not extensively explored.
In [19], the authors described the main challenges

regarding cloud federation and interoperability, as well as
showcased and reviewed the potential standards to tackle
these issues. Similar to [17], their work is restricted to
IaaS interoperability, with no other service or deployment
models being covered.

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 4 of 24

Fig. 2 Related research areas

Cloud brokerage
According to the Gartner definition [20], “Cloud services
brokerage is an IT role and business model in which a
company or other entity adds value to one or more (public
or private) cloud services on behalf of one or more con-
sumers of that service via three primary roles including
aggregation, integration and customization brokerage”. As
defined by NIST [21], a cloud service broker “... is an
entity that manages the use, performance and delivery of
cloud services and negotiates relationships between cloud
providers and cloud consumers.” From these definitions,
it is clear that any business player which intends to act
as a broker between the cloud consumers and the cloud
providers must cope with the diversity of providers and
the heterogeneity of the multitude of services the latter
offer.
In [6], the authors proposed taxonomies for inter-cloud

architectures and application brokering. They presented
a detailed survey of both academic and industry devel-
opments for inter-cloud, cataloguing many projects and
fitting them onto the introduced taxonomies. They also
analysed the existing works and identified open challenges
in the area of inter-cloud application brokering. Their
efforts are nonetheless limited to broker-based strategies.
In [22], a systematic literature survey was conducted to

compile studies related to cloud brokerage. The authors
presented an understanding of the state of the art and a
novel taxonomy to characterise cloud brokers, identifying
the main limitations of current solutions and highlight-
ing areas for future research. However, just like [6], their
whole analysis only covers broker-based approaches.

Interconnected clouds
Interconnected clouds, also called Inter-cloud, can be
viewed as a natural evolution of cloud computing. Inter-
cloud has been introduced by Cisco [23] as an inter-
connected global “cloud of clouds” that mimics the term
Inter-net, “network of networks”. Basically, the Inter-cloud
refers to a mesh of clouds that are unified based on open
standard protocols to provide a cloud interoperability.
A more sophisticated definition of Inter-cloud is given

by the Global Inter-cloud Technology Forum (GICTF)
[24]: “Inter-cloud is a cloud model that, for the purpose of
guaranteeing service quality, such as the performance and
availability of each service, allows on-demand reassign-
ment of resources and transfer of workload through an
interworking of cloud systems of different cloud providers
based on coordination of each consumer’s requirements
for service quality with each provider’s SLA and use of
standard interfaces”.
In [8, 9, 25], the author investigated the consump-

tion of resources and services from multiple clouds, as
well as proposed a list of requirements for interoper-
ability solutions, highlighting the technological barriers
and some well-known solutions for multi-cloud environ-
ments. The author did not present the origin of these
requirements, nor did she identify the degree of fulfill-
ment of the requirements by theoretical approaches and
technical solutions.
In [26], the authors discussed all the relevant aspects

motivating cloud interoperability, categorising and iden-
tifying cloud interoperability scenarios and architectures.
They provided a taxonomy of the main challenges for the

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 5 of 24

Inter-cloud realisation. A comprehensive review of the
state of the art, including standardisation initiatives, ongo-
ing projects and studies in the area, was also conducted.
In [27], the authors analysed the existing literature to

identify how interoperability in cloud computing has been
addressed. They investigated requirements and usage sce-
narios for interoperable applications as well as cloud
interoperability solutions, presenting a limited list of open
issues and directions for future research.
In [28], the authors surveyed the literature to analyse

and categorise various solutions for solving the interop-
erability and portability issues of Interconnected clouds,
referring to both user-side (Multi-clouds or Aggregated
service by Broker) and provider-side (Federated clouds or
Hybrid clouds) scenarios, as specified in [8, 25]. They also
performed a comparative analysis of the literature works
falling into the same category, and discussed the chal-
lenges of Interconnected clouds along the same lines as
[17] and [26].
Despite delving into Interconnected clouds, starting

with motivation, scenarios, possible solutions for interop-
erability, and ending with open issues and future direc-
tions, all these works ([26–28]) gave limited attention to
cloud resource orchestration. In addition, none of them
covered aspects pertaining to the application develop-
ment, deployment, and lifecycle management.

Cloud resource orchestration
In a panorama where organisations get to use many types
of cloud computing systems simultaneously, the com-
plexity of the workloads devoted to the management of
the life-cycle of resources (data and applications) across
the systems dramatically increases. Cloud orchestration
is the process of managing these multiple workloads,
in an automated fashion, across several cloud solutions.
Typical activities underlying such a complex process are
the resource description, selection, configuration, deploy-
ment, monitoring and control. Let us not forget that the
orchestration problem is exacerbated by the diversity of
the cloud systems, for what concerns both technical and
administrative features.
In [2], the authors characterised the cloud resource

orchestration in a multi-layered stack, and highlighted
the main research challenges involved in programming
orchestration operations for different cloud resource
types across all layers of a cloud resource stack. The scope
of their analysis is nevertheless restricted to the area of
cloud resource orchestration.
In [3], the authors proposed a multidimensional taxon-

omy for classifying and comparing cloud resource orches-
tration techniques from both industry and academia,
identifying open research issues and offering directions
for future study. Similar to [2], their work only covers the
topic of cloud resource orchestration.

In [29], the authors performed a systematic literature
survey to build up a taxonomy of the main research inter-
ests regarding TOSCA. Different topics were addressed,
such as devising cloud orchestration methods using
TOSCA, extending the language of TOSCA, and present-
ing tools for manipulating TOSCA models. Despite being
envisioned as a topic which is expected to play an increas-
ingly important role, interoperability received very limited
attention.

Analysis framework
In this section we introduce the desired capabilities
for CROFs, focusing on deployment and management
aspects. From the consumers’ standpoint, CROFs imple-
ment a service-oriented model which ensures success-
ful hosting and delivery of applications by using cloud
resources in order to meet their QoS requirements. Our
reference architecture for CROFs is depicted in Fig. 3.
Processes and services involved in cloud resource orches-
tration are categorised depending on their functionalities
in relation to this reference model.
The Access Layer regulates interaction with the frame-

work. Users can access services from the lower layers by
means of CLIs, Web APIs, and Dashboards. The Applica-
tion Management Layer concerns the handling of appli-
cations throughout their entire lifecycle, from the Devel-
opment to the Execution passing through the Deploy-
ment. TheDevelopment refers to languages and models to
typically represent applications, workflows, QoS require-
ments, and policies. Application descriptions define appli-
cation components as well as their relationships. Work-
flow descriptions specify the behavioural aspects of appli-
cations by means of declarative or imperative approaches.
Policy descriptions provide applications with dynamic
control behaviours (e.g. defining load-based policies to
scale up and down applications) in order to meet QoS
requirements. The Deployment refers to the actual appli-
cation deployment on cloud resources, which might go
through a preliminary resource discovery process. The
Execution entails effective automation of complex man-
agement tasks, such as scaling and failure handling, which
typically require a monitoring engine collecting system
and application metrics. Based on the captured metrics,
a recovery engine and a policy enforcement engine can
determine the decisions to make in order to recover from
failures and enforce policies, respectively.
The Resource Management Layer includes services (e.g.

discovery services, provisioning services, monitoring ser-
vices) handling resources throughout their whole lifecycle.
These services coordinate the required actions from the
upper layer by leveraging operations at the Resource Pro-
visioning Layer. The Resource Provisioning Layer encom-
passes services offering the most basic operations regard-
ing cloud resources. A range of provisioning services (e.g.

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 6 of 24

Fig. 3 Reference architecture for CROFs

create, start, scale, stop, and delete) are usually furnished
for every supported resource.
Significant research has been done in academic and

industry landscapes toward characterisation of cloud
orchestration tools. In [4, 30], Baur et al. investigated
the required features for such tools, and gave a defini-
tion of them. In [31], Ranjan et al. introduced technical
dimensions for CROF analysis, thus providing insights
into existing frameworks. In [3], Weerasiri et al. identified
the main dimensions and common building blocks which
characterise cloud resource orchestration solutions.
In [32–34], the authors presented their vision for cloud

computing, including views on future research areas, one
of them being resource provisioning and orchestration.
A thorough analysis of these research areas and related
challenges from different perspectives was carried out.
In [35], GigaSpaces Research investigated prevalent

approaches for managing applications in cloud environ-
ments, namely, orchestration, PaaS (Platform as a Service)
and CMP (Cloud Management Platform). A number of
categories serving as a common ground for comparison
between the different approaches were proposed.
Based on the study of Baur et al.[4], we enriched

the list of desirable capabilities pertaining to CROFs by
reviewing the literature and integrating the aforemen-
tioned works. Such capabilities, summarised in Fig. 4,
can be classified into two main categories as either
Cloud Features or Application Features. Details about
each set of features are provided in the following
subsections.

Cloud features
Cloud features address cloud infrastructure aspects with
special focus on supported deployment across multiple
cloud providers. Whilst some works [4, 35] investigated
features such as multi/cross-cloud support and integra-
tion of external services and systems, others [31] focused
on capabilities such as interoperability and access modes
to CROFs. We propose a comprehensive approach which
takes into account all the said aspects that we discuss next.

Multi-cloud support
Supporting multiple cloud providers is one of the most
crucial features for CROFs, as it allows to select the
best matching offer for an application from a diverse
cloud landscape. Cloud providers often differ from each
other regarding their APIs. For that reason CROFs should
offer a cloud abstraction layer (see “Interoperability
approach” section), which hides differences and avoids
the need for provider-specific customisation causing the
vendor lock-in issue.

Cross-cloud support
Cross-cloud support enhances the multi-cloud feature by
allowing to distribute component instances of a single
application over multiple cloud providers. The advantages
of cross-cloud deployment are threefold: a) it allows a
sophisticated selection of the best-fitting cloud providers
on a per component instance basis, optimising costs or
improving quality of services; b) it leverages the appli-
cation availability as it introduces resilience against the

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 7 of 24

Fig. 4 Taxonomy of the CROF characterisation framework

failure of individual cloud providers; and c) it helps coping
with privacy issues.

Interoperability approach
In the context of cloud computing, interoperability can be
defined as the ability to develop applications that com-
bine resources that can interoperate, or work together
from multiple cloud providers, hence taking advantage
of specific features provided by each provider [27]. A
few research papers [9, 27, 28] comprehensively reviewed
the literature in order to dissect the state of the art
in cloud interoperability, resulting in a diverse range of
approaches falling into the following categories: open
standards, semantics, model-driven engineering (MDE),
and open libraries & services.
Formulating standards for cloud computing is the

most obvious solution for interoperability. Even though
a plethora of standards have been proposed so far (e.g.,

OCCI6, CIMI7, OVF8, CDMI9, TOSCA [36]), lack of
widespread accepted standards necessitates investigating
other solutions for interoperability. When cloud providers
use different APIs and data models in order to exhibit
the same features, semantic interoperability becomes
involved. Semantic technologies (e.g, OWL10, SPARQL11,
SWRL12) can prove useful to provide semantic interop-
erability among different cloud providers. Broker-based
approaches can also alleviate semantic interoperability by
means of ontology-based interfaces concealing the differ-
ences among cloud vendors. Cloud interoperability can
also be addressed by exploiting MDE techniques [10].
6https://occi-wg.org/about/specification/
7https://www.dmtf.org/standards/cmwg
8https://www.dmtf.org/standards/ovf
9https://www.snia.org/cdmi
10https://www.w3.org/TR/owl-syntax/
11https://www.w3.org/TR/sparql11-query/
12https://www.w3.org/Submission/SWRL/

https://occi-wg.org/about/specification/
https://www.dmtf.org/standards/cmwg
https://www.dmtf.org/standards/ovf
https://www.snia.org/cdmi
https://www.w3.org/TR/owl-syntax/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/Submission/SWRL/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 8 of 24

Another viable solution for cloud interoperability includes
open libraries (e.g., Apache jclouds13, Apache Libcloud14)
and services, which rely on abstraction layers in order
to decouple application development from proprietary
technologies of cloud providers.

Integration
Support for advanced IaaS/PaaS services (e.g., DBaaS,
LBaaS, FWaaS) is desirable. It reduces complexity and
management efforts for the end user. On a negative note,
it comes at the expense of flexibility.
BYON (Bring Your Own Node) captures the ability to

use already running servers for application deployment. In
particular, it enables the use of servers not managed by a
cloud platform or virtual machines on unsupported cloud
providers.

Access
This feature captures what interfaces CROFs use to inter-
act with cloud resources. Three types of interfaces are
usually supported: command-line, web-based dashboard,
and web-based API.
Command-line interfaces wrap cloud-specific API

actions as commands or scripts executable through shell
environments. Despite command-line interfaces being
easier to implement, their usage requires a deep under-
standing about cloud resources and related orchestration
operations.
Web-based dashboards present cloud resources as user-

friendly artifacts and resource catalogues. Visual arti-
facts and catalogues aim at simplifying resource selec-
tion, assembly, and deployment. These features make
Web-based dashboards simpler and more flexible than
command-line interfaces.
Web-based APIs allow other tools and systems (e.g.

monitoring tools) to integrate cloud resource manage-
ment operations into their functionalities. They provide
the highest abstraction out of the three interface types.

Application features
Application features address development, deployment,
and execution aspects of applications. To this end, unlike
all previous works, we collect features according to the
application phase they pertain to. For instance, with ref-
erence to the development phase, we have identified
Portability and Containerisation as relevant features. Fur-
thermore, we also propose a classification of application
domains of interest for CROFs.

Application domain
Application domain refers to the types of applications that
CROFs have been targeted and customised for. Academic

13https://jclouds.apache.org/
14http://libcloud.apache.org/

research has been done toward the characterisation of
application domains over the past few years [31][37][38].
Grounding on the study of Buyya et al. [37], we classi-
fied application domains into two categories: Scientific
applications, and Business applications (see Fig. 5).
Cloud computing systems meet the needs of dif-

ferent types of applications in the scientific domain:
high-performance computing (HPC) applications, high-
throughput computing (HTC) applications, and Large-
scale data analytics/Internet of Things (IoT), which
is a matter of common interest for both scien-
tific and business sectors. In regard to the business
domain, cloud computing is the preferred technol-
ogy for a wide range of applications, from multi-
tier web applications (e.g., web, mobile, online gam-
ing applications) to media and content delivery network
(CDN) applications (e.g, video encoding & transcoding,
video rendering, video streaming, web/mobile content
acceleration).

Portability
Portability has been defined as the capability of a pro-
gram to be executed on various types of data processing
systems without converting the program to a different
language and with little or no modification [39]. In the
context of cloud computing, portability can be classified
into three categories: data portability, function or appli-
cation portability, and service or platform portability [40].
In particular, application portability refers to the ability
to define application functionalities in a vendor-agnostic
way.
Supporting open standards such as CAMP [41] and

TOSCA [36] for modelling the application topology and
the component lifecycles facilitates the usage of CROFs
and further increases the reusability of the topology
definition, as it restricts the vendor lock-in issue to
cloud provider level. Reusability can also be improved
via a modularised approach regarding the application
description. Methods to achieve modularity include
templating, parameterisation, and inheritance. Further-
more, since the initial effort for describing applications
and application components is high, model sharing by
means of existing libraries or marketplaces would be
beneficial.

Containerisation
Container-based virtualisation [42] is a key approach for
sharing the host operating system kernel across multi-
ple guest instances (i.e., containers), while keeping them
isolated. Environment-level containers provide a resource
isolation mechanism with little overhead compared to
OS-level hypervisors [43]. Moreover, the increased isola-
tion offered by containers allows resource consumption to
be configured, controlled, and limited at the instance level.

https://jclouds.apache.org/
http://libcloud.apache.org/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 9 of 24

Fig. 5 Application domain classification

Docker is the leading Linux-based platform for develop-
ing, shipping, and running applications through container
based virtualisation.
Since managing a large amount of containers inside a

Docker cluster can be difficult, container-centric orches-
trators such as Docker Swarm15, Google Kubernetes16,
and Apache Mesos17 have appeared. They perform
orchestration at container level by automating the pro-
visioning and management of complex containerised
deployments across multiple hosts and locations.

Resource selection
Resource selection refers to the level of automation sup-
ported by CROFswith respect to the selection of hardware
and software resources. It usually involves identifying and
analysing alternative cloud resources based on selection
criteria. Resource selection approaches can be classified
into four categories.
In a manual binding users provide the concrete unique

identifiers of the cloud entities. In an automatic binding
they specify abstract requirements (e.g. number of cores),
which CROFs are responsible for binding to a concrete
offer at runtime. Automatic binding can be enhanced by
offering an optimised binding, which leverages optimisa-
tion criteria based on attributes of the cloud provider (e.g.,
price, location) to select the best fitting offer. A dynamic
binding offers a solving system that enables changes to the
binding based on runtime information (e.g., metric data
from the monitoring system).

Lifecycle control
Lifecycle control defines the actions that need to be exe-
cuted in order to fully manage cloud applications. Existing
CROFs provide varying levels of automation, typically
categorised as script-based, and DevOps approaches.

15https://docs.docker.com/engine/swarm/
16https://kubernetes.io/
17http://mesos.apache.org/

A script-based approach consists of a set of shell scripts,
which are executed in a specific order. It has limited ability
to express dependencies, react to changes, and verify con-
figurations. Script-based approaches can be extended to
support DevOps tools (e.g., Chef18, Puppet19, Ansible20)
that offer a more sophisticated approach to deployment
management and ready-to-use deployment descriptions.

Wiring &workflow
Most cloud applications are distributed with components
residing on different virtual machines. When application
deployment takes place, an application instance consisting
of one or more component instances gets created. Since
dependency relationshipsmay exist between components,
the deployment functionality also has the task of wiring
component instances together.
A straight-forward approach to resolve those dependen-

cies is attribute and event passing, in which case lifecycle
scripts lock/wait for attributes to become available or
register listeners on topology change events. An improve-
ment is a manual workflow defined by users in order to
take care of the deployment order. Nevertheless, the eas-
iest way for users to deploy applications is an automatic
workflow deduction from the lifecycle actions defined on
components and their relationships. Additionally, CROFs
may offer extensions for external services like IaaS/PaaS
services (see “Integration” section) to ensure that the
deployment engine is aware of this dependency.

Monitoring
Tracking the behaviour of applications is the key to assess-
ing the quality of the deployment and an important build-
ing block for adaptation. As a first step this comprises
the collection of metrics. CROFs should offer a way to
measure system metrics (e.g., CPU usage) and application
metrics (e.g., number of requests). If predefined metrics

18https://www.chef.io/
19https://puppet.com/
20https://www.ansible.com/

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
http://mesos.apache.org/
https://www.chef.io/
https://puppet.com/
https://www.ansible.com/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 10 of 24

are not sufficient, a well defined way to add custommetrics
should be provided. Aggregation mechanisms enable to
compute higher-level metrics and combine multiple met-
rics as well. Access to historical data is also desirable in
order to support a higher-level evaluation of monitoring
data.

Runtime adaptation
CROFs should automatically adapt applications in order
to deal with dynamic deviations (e.g., increased load).
Operations to face such changes are mainly scaling, and
migration. However, the adaptation support of many
CROFs is limited to horizontal scaling with threshold-
based triggers. Rule engines leveraging complex metrics
and QoS goals would be an improvement.
Since cross-cloud deployments may experience failures,

CROFs should also support recovery from undesired, erro-
neous states. Another feature related to adaptation is con-
tinuous integration/continuous delivery (CI/CD), which
allows to modify the topology model of deployed applica-
tions reducing changes to as few as possible.

Review of cROFs
This section presents a selection of CROFs from differ-
ent landscapes. Notwithstanding that the current state
of the art embraces a large number of frameworks, this
work contemplates a subset of them which we deem to
be representative of the characteristics of the majority
of existing solutions. We classify the frameworks in two
categories: production/commercial CROFs, and experi-
mental/academic ones.
Production/commercial CROFs are used in a produc-

tion environment by private and public cloud providers.
Whereas some of them are closed-source, others are
open-source and supported by a thriving community
of developers and users. Experimental/academic CROFs
usually originate from the research scenery and advance
the state of the art, even though their implementation is
mostly prototypal.
We discuss next each class of CROFs, and analyse

their main capabilities from both cloud and application
perspectives, as extensively covered in “Analysis frame
work” section. Table 1 provides a bird’s-eye view of the
frameworks taken under consideration. Specifically, each
row represents a CROF (Name) and specifies the origi-
nal authors (Organisation), basic dates for the initial and
latest releases (Active), a brief introduction (Description),
and the sources consulted (References).

Production/commercial cROFs
Nowadays, there is a great variety of produc-
tion/commercial CROFs around [44], such as
infrastructure-centric services (e.g., Heat, CloudForma-
tion) provided by cloud providers which are also IaaS

providers, platform-centric (e.g., Cloud Foundry, Open-
Shift) and platform-agnostic (e.g., Cloudify, Terraform)
tools provisioning resources from IaaS providers. In this
section we first debate some of the most relevant solu-
tions introduced in Table 1, and subsequently summarise
their cloud and application features in Tables 2 and 3
respectively.

Heat
OpenStack Heat [45] is a service for managing the
entire life-cycle of infrastructure and applications within
OpenStack clouds. It implements an orchestration engine
to launch multiple composite cloud applications based
on either a CloudFormation compatible template for-
mat (CFN) or the native OpenStack Heat Orchestration
Template format (HOT). HOT templates are defined in
YAML.
A Heat template describes the infrastructure of a cloud

application in a declarative fashion, enabling creation of
most OpenStack resource types as well as more advanced
functions (such as instance high availability, instance auto-
scaling, and nested stacks) through OpenStack-native
REST API calls. The resources, once created, are referred
to as stacks. Heat templates are consumed by the Open-
StackClient, which provides a command-line interface
(CLI) to OpenStack APIs for launching stacks, view-
ing details of running stacks, and updating and deleting
stacks.
Heat only allows a single-cloud deployment on an

OpenStack environment. With reference to interoperabil-
ity, Heat provides neither semantics nor MDE solutions,
but it provides support for TOSCA via the independent
Heat-Translator project 21 which translates TOSCA tem-
plates to HOT.
Regarding portability, Heat partially supports model

standards (TOSCA) and reusability via input parameters,
and template composition. It also supports containerisa-
tion by means of OpenStack Zun service 22.
Cloud resources can only be selected through manual

binding, whereas both manual and automatic workflows
can leverage script-based or DevOps tools (such as Chef
and Puppet) in order to handle the whole application
life-cycle. Heat provides horizontal scaling with thresh-
old triggers based on infrastructure metrics. It partially
supports continuous delivery by updating existing stacks,
resulting in some resources being updated in-place and
others being replaced with brand new resources. Fail-
ure recovery capabilities are also supported by means of
manual workflows and stacks update.

21https://wiki.openstack.org/wiki/Heat-Translator
22https://wiki.openstack.org/wiki/Zun

https://wiki.openstack.org/wiki/Heat-Translator
https://wiki.openstack.org/wiki/Zun

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 11 of 24

Ta
b
le

1
Li
st
of

C
RO

Fs
un

de
rc
on

si
de

ra
tio

n
fo
rr
ev
ie
w
pu

rp
os
es

N
am

e
O
rg
an

is
at
io
n

A
ct
iv
e

D
es
cr
ip
ti
o
n

R
ef
er
en

ce
s

H
ea
t

O
pe

nS
ta
ck

20
10
-p
re
se
nt

H
ea
to

rc
he

st
ra
te
s
co
m
po

si
te

cl
ou

d
ap

pl
ic
at
io
ns

vi
a

te
m
pl
at
es
,t
hr
ou

gh
bo

th
an

O
pe

nS
ta
ck
-n
at
iv
e
A
PI

an
d
a
C
lo
ud

Fo
rm

at
io
n-
co
m
pa

tib
le
Q
ue

ry
A
PI
.

[4
5]

C
lo
ud

ify
G
ig
aS
pa

ce
s

20
12
-p
re
se
nt

C
lo
ud

ify
is
a
TO

SC
A
-b
as
ed

cl
ou

d
or
ch
es
tr
at
io
n

fra
m
ew

or
k
w
hi
ch

en
ab

le
s
to

m
od

el
ap

pl
ic
at
io
ns

an
d

se
rv
ic
es

an
d
au
to
m
at
e
th
ei
re
nt
ire

lif
ec
yc
le
.

[4
6]

Br
oo

kl
yn

A
pa

ch
e

20
12
-p
re
se
nt

Br
oo

kl
yn

is
a
cl
ou

d
or
ch
es
tr
at
io
n
fra

m
ew

or
k

im
pl
em

en
tin

g
O
A
SI
S
C
A
M
P
th
at
al
lo
w
s
to

de
pl
oy

an
d
m
an
ag
e
ap

pl
ic
at
io
ns

vi
a
de

cl
ar
at
iv
e
bl
ue

pr
in
ts
.

[4
7]

St
ra
to
s

A
pa

ch
e

20
13
-2
01
7

St
ra
to
s
is
a
po

ly
gl
ot

Pa
aS

fra
m
ew

or
k
th
at
he

lp
s

m
od

el
an
d
ru
n
co
m
po

si
te

an
d
sc
al
ab

le
ap

pl
ic
at
io
ns

on
al
lm

aj
or

cl
ou

d
in
fra

st
ru
ct
ur
es
.

[4
8]

A
lie
n4

C
lo
ud

Fa
st
C
on

ne
ct

20
14
-p
re
se
nt

A
lie
n4

C
lo
ud

is
a
w
eb

-b
as
ed

pl
at
fo
rm

pr
ov
id
in
g

m
ea
ns

to
m
od

el
,d
ep

lo
y
an
d
m
an
ag
e
TO

SC
A
-b
as
ed

ap
pl
ic
at
io
ns

vi
a
a
TO

SC
A
ru
nt
im

e
en

gi
ne

.

[4
9]

Te
rr
af
or
m

H
as
hi
C
or
p

20
14
-p
re
se
nt

Te
rr
af
or
m

is
an

in
fra

st
ru
ct
ur
e-
as
-c
od

e
to
ol
th
at

en
ab

le
s
to

pr
ov
is
io
n,
an
d
m
an
ag
e
in
fra

st
ru
ct
ur
es

us
in
g
a
hi
gh

-le
ve
lc
on

fig
ur
at
io
n
la
ng

ua
ge

.

[5
0]

C
o
m
m
er
ci
al

C
lo
ud

Fo
rm

at
io
n

A
W
S

20
11
-p
re
se
nt

C
lo
ud

Fo
rm

at
io
n
is
an

in
fra

st
ru
ct
ur
e-
as
-c
od

e
to
ol
th
at

he
lp
s
m
od

el
an
d
se
tu

p
A
W
S
in
fra

st
ru
ct
ur
e
re
so
ur
ce
s

by
m
ea
ns

of
a
JS
O
N
en

co
de

d
te
m
pl
at
e.

[5
1]

C
lo
ud

ia
to
r

U
ni
ve
rs
ity

of
U
lm

20
15
-2
01
7

C
lo
ud

ia
to
ri
s
a
cr
os
s-
cl
ou

d
or
ch
es
tr
at
io
n
to
ol
th
at

al
lo
w
s
to

de
sc
rib

e
an

ap
pl
ic
at
io
n
on

ce
an
d
de

pl
oy

it
on

di
ffe

re
nt

pu
bl
ic
an
d
pr
iv
at
e
cl
ou

d
pr
ov
id
er
s.

[5
2,
53
]

Ro
bo

co
nf

U
ni
ve
rs
ity

of
G
re
no

bl
e
A
lp
es

20
14
-2
01
7

Ro
bo

co
nf

is
bo

th
a
pl
at
fo
rm

an
d
a
fra

m
ew

or
k
to
ol
to

de
pl
oy

an
d
m
an
ag
e
el
as
tic

cl
ou

d
ap

pl
ic
at
io
ns

us
in
g

au
to
m
at
ic
re
ac
tio

ns
an
d
re
co
nf
ig
ur
at
io
ns
.

[5
4]

IN
D
IG
O

IN
D
IG
O
co
ns
or
tiu

m
20
15
-2
01
7

IN
D
IG
O
is
a
da
ta
an
d
co
m
pu

tin
g
pl
at
fo
rm

ta
rg
et
ed

at
sc
ie
nt
ifi
c
co
m
m
un

iti
es
,w

hi
ch

op
tim

is
es

ap
pl
ic
at
io
n

ex
ec
ut
io
n
on

cl
ou

d
an
d
gr
id
in
fra

st
ru
ct
ur
es
.

[5
5,
56
]

M
iC
A
D
O

C
O
LA

co
ns
or
tiu

m
20
17
-2
01
9

M
iC
A
D
O
is
a
hi
gh

ly
cu
st
om

is
ab

le
m
ul
ti-
cl
ou

d
or
ch
es
tr
at
io
n
an
d
au
to
-s
ca
lin
g
fra

m
ew

or
k
fo
rD

oc
ke
r

co
nt
ai
ne

rs
,o
rc
he

st
ra
te
d
by

Ku
be

rn
et
es
.

[5
7]

M
O
D
A
C
lo
ud

s
M
O
D
A
C
lo
ud

s
co
ns
or
tiu

m
20
12
-2
01
5

M
O
D
A
C
lo
ud

s
is
a
to
ol
bo

x
an
d
a
ru
nt
im

e
pl
at
fo
rm

fo
r

th
e
de

si
gn

an
d
au
to
m
at
ic
de

pl
oy
m
en

to
f

ap
pl
ic
at
io
ns

on
m
ul
tip

le
cl
ou

ds
w
ith

gu
ar
an
te
ed

Q
oS
.

[5
8,
59
]

A
ca
d
em

ic
Se
aC

lo
ud

s
Se
aC

lo
ud

s
co
ns
or
tiu

m
20
13
-2
01
6

Se
aC

lo
ud

s
is
a
fra

m
ew

or
k
th
at
en

ab
le
s
se
am

le
ss

ad
ap

tiv
e
m
ul
ti-
cl
ou

d
m
an
ag
em

en
to

fs
er
vi
ce
-b
as
ed

ap
pl
ic
at
io
ns

ov
er
m
ul
tip

le
he

te
ro
ge

ne
ou

s
cl
ou

ds
.

[6
0,
61
]

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 12 of 24

Table 2 Cloud-based comparison of production/commercial CROFs

CROFs

Cloud Features Heat Cloudify Brooklyn Stratos Alien4Cloud Terraform CloudFormation

Multi-Cloud x � � � � � x

Cross-Cloud x � � � � � x

Interoperability

- Open Standards 0 0 x x 0 x x

- Semantics x x x x x x x

- MDE x x x x x x x

- Open Libraries & Services x x � � x x x

Integration

- External IaaS/PaaS services x x x x x � x

- BYON x � � x � x x

Access

- Command-Line � � � � � � �
- Web-based Dashboard � � � � � � �
- Web-based API � � � � � � �
x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

Cloudify
Cloudify [46] is an open-source orchestration framework
based on TOSCA. It provides services in order to model
applications and automate their entire life-cycle through
a set of built-in workflows. Application templates are
referred to as blueprints, which are YAML documents
written in Cloudify’s DSL (Domain Specific Language).
Blueprints are normally consumed by the Cloudify CLI,
which includes all of the commands necessary to run any
actions on Cloudify Manager.
Typical blueprints contain declarations for various

resource types, including cloud resources. Cloudify allows
multi-cloud and cross-cloud deployments by means of
built-in plugins. It also supports BYON, and leverages
TOSCA for interoperability and portability. However,
despite being aligned with the modelling standard, Cloud-
ify’s DSL does not directly reference the standard types.
Cloudify supports containerisation using Docker. Con-

tainer orchestration is also available through Kubernetes.
Cloud resources can only be selected through manual
binding, whereas both manual and automatic workflows
can leverage script-based or DevOps tools (such as Ansi-
ble, Chef, and Puppet) in order to handle the applica-
tion life-cycle. Cloudify provides infrastructure, applica-
tion, and custom metrics. It also enables the definition
of custom aggregations and policies using Clojure23 and
Riemann24.

23https://clojure.org/
24http://riemann.io/

Cloudify offers built-in workflows for application
healing (by applying the uninstall and install work-
flows’ logic, respectively) and horizontal scaling. Com-
plex scenarios (e.g., vertical scaling, cloud bursting)
are not supported out of the box. Live migration
is partially-fulfilled in the context of containerised
applications, though. Multiple pods with container-
ised applications can be moved between nodes in
the same Kubernetes cluster, without service disrup-
tion. Continuous delivery is supported through deploy-
ment updates, which allow to modify a running topol-
ogy by adding/removing/modifying nodes. Modifying
existing nodes will cause their automatic reinstallation,
though.

Brooklyn
Apache Brooklyn [47] is an open-source framework for
modelling, deploying, and managing distributed applica-
tions defined using declarative YAML blueprints writ-
ten in Brooklyn’s DSL. Brooklyn’s YAML format follows
the CAMP specification [41], but uses some custom
extensions. Support for TOSCA is planned for the near
future. Blueprints are usually consumed by the Brooklyn
client CLI in order to access a running Brooklyn Server.
A web console and powerful REST-APIs are available
as well.
Brooklyn allows multi-cloud and cross-cloud deploy-

ments on many public and private clouds. It also supports
private infrastructures (BYON), and leverages Apache
jclouds as cloud abstraction layer for interoperability.
Portability is achieved via model reusability mechanisms
(e.g, type inheritance) and model sharing (e.g, types

https://clojure.org/
http://riemann.io/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 13 of 24

Table 3 Application-based comparison of production/commercial CROFs

CROFs

Application Features Heat Cloudify Brooklyn Stratos Alien4Cloud Terraform CloudFormation

Portability

- Model Standards 0 0 0 x 0 x x

- Model Reusability 0 � 0 0 � � 0

- Model Sharing x � � 0 � � x

Development Containerisation � � x � � � �
Resource Selection

- Manual Binding � � � � � � �
- Automatic Binding x x 0 x x x x

- Optimised Binding x x x x x x x

- Dynamic Binding x x x x x x x

Lifecycle Control

- Script-based � � � x � � �
- DevOps � � � � � � �
Wiring &Workflow

- Attribute & Event Passing � � 0 � � � �
- Manual Workflow � � x � � x x

- Automatic Workflow � � x x � � �
Deployment - External Services x x x x x � x

Monitoring

- System Metrics � � x � � � �
- Application Metrics x � x � � x �
- Custom Metrics x � � x � x �
- Aggregation � � 0 � � � �
- Historical Data x � x x � x �
Runtime Adaptation

- Threshold-based � � � � � � �
- Rule Engine x � x � � x x

- Horizontal Scaling � � � � � � �
- Migration x 0 x 0 0 x 0

- Failure Recovery � � 0 � � x �
Execution - CI/CD 0 � 0 x � � �
x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

shared either locally or in a Git repository). Brooklyn
does not support containers out of the box. However,
containerisation can be integrated by means of separate
projects (e.g, Cloudsoft Clocker25).
Brooklyn supports manual as well as basic automatic

binding for resource selection, whereas it does not sup-
port workflow scenarios. Life-cycle actions (i.e. effectors)
for entities can be configured through either shell scripts

25http://www.clocker.io/

or Chef recipes. Brooklyn pulls metrics by either execut-
ing remote actions or accessing an external monitoring
tool. Nevertheless, it is the user’s responsibility to imple-
ment those actions, or to provide an interface to an
external monitoring tool.
Metrics/QoS can be fed into policies, which auto-

matically take actions such as restarting failed
nodes, or scaling out. By default, a threshold-
based policy is available. Continuous delivery is
exclusively possible on component level, namely

http://www.clocker.io/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 14 of 24

by redeploying single components with updated
software.

Stratos
Apache Stratos [48] is an open-source PaaS framework
which allows developers to build distributed applica-
tions and services. Applications are typically composed
of sets of cartridges representing descriptions of abstract
VMs hosting both business and infrastructure services,
combined with deployment and scaling policies. Stratos
defines configurations and applications in a specific JSON
format, therefore they can be shared. Reusability is lim-
ited, since cartridges contain references to IDs of IaaS
snapshots and hardware configuration. Applications can
be managed by means of Stratos CLI. A web console and
powerful REST-APIs are available as well.
Stratos support multiple providers and utilises Apache

jclouds as cloud abstraction layer for interoperability.
Despite using jclouds, BYON is not supported. No exter-
nal services are supported either. Stratos leverages Kuber-
netes as a cluster orchestration framework in order to
provide containerisation. Cloud resources are manually
selected when configuring cartridges. In addition, while
the life cycle description for managing VMs is done by
Stratos itself, the software setup is delegated to Puppet.
Only manual workflows are supported.
Stratos uses a cartridge agent residing within each VM

in order to access system and application metrics. It is
not possible to define custom metrics. Using in-flight
requests, load average, and free memory metrics com-
bined with a complex event processor and the Drools
rule engine26, Stratos enacts a multi-factored horizontal
auto-scaling. It also includes cloud bursting, allowing to
seamlessly migrate applications between clouds. Recovery
actions are supported in case some tasks within VMs of
an application topology fail, by automatically destroying
and recreating the affected cartridge instance. Continuous
delivery is not supported, since users need to undeploy
applications before changing their definitions.

Alien4Cloud
Alien4Cloud (Application LIfecycle ENabler for cloud)
[49] is an open-source platform that makes application
management on the cloud easy for enterprises. It leverages
other existing open-source projects that help orchestrat-
ing cloud applications and focus on run-time aspects
(e.g., Cloudify). In Alien4Cloud, applications templates
(blueprints) are modelled in TOSCA in order to allow
interoperability and portability. Blueprints can also be
shared across platform users via amaintained TOSCA cat-
alog. However, Alien4Cloud supports a slightly modified
version of TOSCA Simple Profile.

26https://www.drools.org/

Application deployment is done through an orchestra-
tor on a location configured for and managed by an
orchestrator. Alien4Cloud supports a number of orches-
trators (Cloudify, Puccini27, and Marathon28) via plugins.
Locations describe a logical deployment target ranging
from private/public clouds to a set of physical machines
(BYON), or even Docker containers (Kubernetes and
Mesos). Multi-cloud and cross-cloud deployments are
supported.
Cloud resources can only be selected through man-

ual binding (node substitution), whereas both manual and
automatic workflows can leverage script-based or DevOps
tools (such as Ansible, Chef, and Puppet) in order to
handle the application life-cycle. Regarding monitoring
and run-time adaptation, since Cloudify can be used as
Alien4Cloud’s backend orchestration solution, the same
considerations apply. In particular, Alien4Cloud supports
horizontal scaling as well as continuous delivery.

Terraform
Terraform [50] is an open-source infrastructure as code
tool for building, changing, and versioning infrastructures
in a platform-agnostic way. It uses its own high-level con-
figuration language known as Hashicorp Configuration
Language (HCL), or optionally JSON, in order to detail the
infrastructure setup. Despite being non-compliant with
any model standards, HCL supports reusability via mod-
ules and module composition. Reusable modules can also
be shared by means of the Terraform Registry as well as
other sources (e.g., GitHub, Bitbucket). Configurations are
usually consumed by the Terraform CLI, but Terraform
Enterprise also provides both a web-based dashboard and
REST APIs.
Terraform can manage multiple cloud providers and

even cross-cloud dependencies by means of special plu-
gins called providers. Providers are available for Docker
containers and container orchestration as well as external
cloud services (e.g. Amazon RDS29). However, no sup-
port is provided for BYON. Cloud resources are manually
selected during configuration, while life-cycle actions can
be configured through provisioners executing scripts or
running configuration management (Chef, Puppet, Salt).
Only automatic workflows are supported.
Terraform leverages providers in order to provide auto-

scaling capabilities with threshold triggers on systemmet-
rics gathered by monitoring services (e.g., Azure Mon-
itor30, Amazon CloudWatch31). Continuous delivery is
supported by applying configuration updates, which allow
to add/remove/modify resources. When resource argu-
ments cannot be updated in-place, the existing resource
27https://github.com/tliron/puccini
28http://mesos.apache.org/
29https://docs.aws.amazon.com/rds/index.html
30https://docs.microsoft.com/en-us/azure/azure-monitor/
31https://docs.aws.amazon.com/cloudwatch/index.html

https://www.drools.org/
https://github.com/tliron/puccini
http://mesos.apache.org/
https://docs.aws.amazon.com/rds/index.html
https://docs.microsoft.com/en-us/azure/azure-monitor/
https://docs.aws.amazon.com/cloudwatch/index.html

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 15 of 24

will be replaced by a new one instead. No recovery actions
are supported out of the box, since any errors need to be
addressed manually.

CloudFormation
AWS CloudFormation [51] is a template-based
infrastructure-as-code tool for managing AWS infrastruc-
ture deployments. All resources and dependencies are
declared in a JSON or YAML template, which CloudFor-
mation uses as a blueprint for building AWS resources. A
collection of managed resources is called stack. Although
CloudFormation templates do not comply with any model
standards, reusability is partially supported via input
parameters, and nested stacks. Templates are usually con-
sumed by the CloudFormation console, or REST APIs, or
CLI.
CloudFormation can only model and manage AWS

resources. No support is provided for multiple cloud
providers or BYON. Containerisation is natively sup-
ported via Elastic Container Service (ECS)32 resources.
Container orchestration is also supported by means of
Elastic Kubernetes Service (EKS)33 resources as well.
Cloud resources are selected through manual binding,
whereas lifecycle actions can be configured through user-
data scripts or DevOps tools (Chef, Puppet). Only auto-
matic workflows are supported.
CloudFormation provides automatic scaling capabilities

by means of AWS Auto Scaling34, which uses dynamic
scaling and predictive scaling to automatically scale
resources based on Amazon CloudWatch metrics. Cus-
tomised metrics for Application Auto Scaling can also be
defined. Live migration is partially-fulfilled in the context
of containerised applications. For instance, it’s possible
to gracefully migrate existing applications from a worker
node group to another. Continuous delivery is supported
by stack updates. Depending on the resource and prop-
erties being updated, an update might interrupt or even
replace an existing resource. Recovery actions are sup-
ported by automatically rolling back the existing stack on
failure.

Experimental/academic cROFs
In this section, we initially review an ensemble of
significant experimental/academic CROFs outlined in
Table 1, and then summarise them according to their
cloud and application features in Tables 4 and 5
respectively. Additionally, we briefly run through other
research initiatives focusing only on specific aspects of
CROFs.

32https://docs.aws.amazon.com/ecs/index.html
33https://docs.aws.amazon.com/eks/
34https://aws.amazon.com/autoscaling/

Cloudiator
Cloudiator [52, 53, 62] is an open-source cross-cloud
orchestration framework, which relies on Apache jclouds
in order to support many public and private cloud plat-
forms. The main orchestration component, namely Colos-
seum, can be accessed via a Java client, or a web-based user
interface, or a REST-API.
The application description consists of individual com-

ponents, which are assembled to form a full application.
Each component provides interface operations (e.g., bash
scripts) for managing the component life-cycle. Depen-
dencies between application components are described
through communication entities linking provided ports
and required ports. Despite being non-compliant to any
modelling standards, application components are reusable
across different applications.
The resource broker is responsible for automatically

selecting the correct cloud offer (previously discovered by
the discovery engine), depending on the desired require-
ments/constraints on virtual machine configuration. The
deployment engine acquires the virtual machine and for-
wards the component installation request to the remote
life-cycle agent, namely Lance. Lance runs component
instances within Docker containers by default. In addition,
only automatic workflows are supported.
Automatic scaling capabilities are provided by means

of AXE, a monitoring and adaptation engine embedded
in Cloudiator, which implements scalability rules con-
sisting of threshold-based conditions linked to raw or
composed metrics. Migration features are partially ful-
filled by supporting access to OpenStack’s live migra-
tion functionality. Recovery actions are supported by the
recovery engine, which detects abnormal states of sys-
tem entities marking them as failed, and applies solu-
tions based on failure categories. The same mechanism
is used in order to represent changes in the models
(continuous delivery).

Roboconf
Roboconf [54, 63] is an open-source scalable orchestra-
tion framework for multi-cloud platforms. Many IaaS
providers (e.g., OpenStack, AWS, Azure, vSphere), as
well as Docker containers and local deployments for on-
premise hosts, are supported by using special plugins.
Roboconf partially supports interoperability by means of
OCCI extensions and a generic target implementation
based on Apache jclouds. In addition, it can be accessed
by means of a shell-based console, or a web-based user
interface, or a REST API.
Roboconf provides a CSS-inspired DSL, which allows

to describe applications and their execution environments
in a hierarchical way. A distributed application is seen as
a set of components, building an acyclic graph describ-
ing both containment and run-time relationships between

https://docs.aws.amazon.com/ecs/index.html
https://docs.aws.amazon.com/eks/
https://aws.amazon.com/autoscaling/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 16 of 24

Table 4 Cloud-based comparison of experimental/research CROFs

CROFs

Cloud Features Cloudiator Roboconf INDIGO-DataCloud MiCADO MODAClouds SeaClouds

Multi-Cloud � � � � � �
Cross-Cloud � � � � � �
Interoperability

- Open Standards x 0 � 0 x 0

- Semantics x x x x x x

- MDE x x x x � x

- Open Libraries & Services � 0 x x � �
Integration

- External IaaS/PaaS services x � x x � �
- BYON x � � x x �
Access

- Command-Line x � � x � x

- Web-based Dashboard � � � � x �
- Web-based API � � � � � �
x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

components, and a group of instances of these compo-
nents. Component definitions can be reused via abstract
types (facets), imports, and inheritance.
Roboconf consists of several modules. The Deploy-

ment Manager (DM) is in charge of instantiating and
managing VMs and remote agents. Agents use plu-
gins (such as Bash or Puppet) in order to handle
the life-cycle of software instances. The DM and the
agents communicate with each other through an asyn-
chronous messaging server. The SoftwareInstanceMan-
ager is responsible for automatically generating software
life-cycle management and monitor software instances
themselves.
Automatic scaling capabilities are provided by means of

autonomic management implemented by the DM and the
remote agents. Agents send notifications to the DMwhen-
ever certain threshold-based conditions linked to system
metrics are met. The DM’s decision engine responds
to those notifications using corresponding imperative
rules. Monitoring application metrics still needs to be
addressed. Both application migrations and global/per-
component rollbacks (continuous deployment) are part of
Roboconf ’s roadmap, but they are not supported out of
the box yet.

INDIGO-DataCloud
INDIGO-DataCloud (INtegrating Distributed data Infras-
tructures for Global ExplOitation) [55, 56, 64] is an open-
source data and computing platform targeted at scientific
communities, and provisioned over Cloud andGrid-based
infrastructures as well as over HTC and HPC clusters.
The INDIGO-DataCloud framework has been developed

within the homonymous project funded under the EU’s
Horizon 2020 Framework Programme [65].
The INDIGO-DataCloud project extended existing

PaaS solutions in order to provide automatic distribution
of applications and/or services over a hybrid and het-
erogeneous set of IaaS infrastructures. Some of the key
INDIGO PaaS components include: Orchestrator, Infras-
tructure Manager (IM), CloudProviderRanker, Monitor-
ing, SLAManager (SLAM),Managed Services/Application
(MSA) Deployment, and Data Management Services. The
Orchestrator coordinates the process of deploying ser-
vices and applications on both on-premise and public IaaS
platforms. It can be accessed via a command-line interface
(Orchent), or a GUI-based portlet, or a REST API.
The Orchestrator delegates the deployment to the IM,

to OpenStack Heat or to the Mesos frameworks, based on
TOSCA templates and a list of providers ranked by the
CloudProviderRanker. The Monitoring component col-
lects monitoring data from both PaaS core services and
client infrastructure/services by means of specific probes.
The SLAM establishes an agreement between customer
and provider about capacity and quality targets. The Data
Management Services provide an abstraction layer for
accessing the data storage in a unified and federated
way.
INDIGO-DataCloud supports multi-cloud and

cross-cloud deployments, as well as interoperabil-
ity by leveraging open standards (OCCI, CDMI). It
also promotes portability by adopting an extension of
TOSCA for describing applications and services. Cloud
resources are automatically selected and optimised
by the CloudProviderRanker, depending on SLAs and

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 17 of 24

Table 5 Application-based comparison of experimental/research CROFs

CROFs

Application Features Cloudiator Roboconf INDIGO-DataCloud MiCADO MODAClouds SeaClouds

Portability

- Model Standards x x 0 0 x 0

- Model Reusability � � � � 0 �
- Model Sharing � � � 0 � �

Development Containerisation � � � � x x

Resource Selection

- Manual Binding x � x � x x

- Automatic Binding � x � x � �
- Optimised Binding � x � x � �
- Dynamic Binding x x x x x �
Lifecycle Control

- Script-based � � x x � x

- DevOps x � � x � x

Wiring &Workflow

- Attribute & Event Passing � � � � � �
- Manual Workflow x x x x x x

- Automatic Workflow � � � � � �
Deployment - External Services x � x x � �

Monitoring

- System Metrics � � � � � �
- Application Metrics � x x x � �
- Custom Metrics � x x x x x

- Aggregation � x � � � �
- Historical Data x x � � � �
Runtime Adaptation

- Threshold-based � � � � � �
- Rule Engine � � � � � �
- Horizontal Scaling � � � � � �
- Migration 0 x 0 x � 0

- Failure Recovery � x � � 0 �
Execution - CI/CD � x x � � x

x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

monitoring data. A configuration management solution
based on Ansible roles is adopted to carry out both the
deployment of the application and the creation of the pre-
configured Docker images. Only automatic workflows are
supported.
Runtime actions, such as horizontal scaling and fail-

ure handling, are automatically supported by the MSA
Deployment (based on Apache Mesos), which uses the
Automatic Scaling Service (based on EC3/CLUES35)

35https://www.grycap.upv.es/clues/eng/index.php

to ensure the elasticity of the cluster, Marathon36
and Chronos37 frameworks in order to handle Long-
Running Services (LRS) and application jobs, respectively.
Marathon can also migrate services if problems occur.
Despite different DevOps practises being adopted for both
the core services and user applications (e.g., automated
builds of each application image are triggered once a new
change is committed to its repository), hot changes in
application deployments are not supported out of the box.

36https://mesosphere.github.io/marathon/
37https://mesos.github.io/chronos/

https://www.grycap.upv.es/clues/eng/index.php
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 18 of 24

MiCADO
MiCADO (Microservices-based Cloud Application-level
Dynamic Orchestrator) [57] is an open-source multi-
cloud orchestration and auto-scaling framework for
Docker containers, orchestrated by Kubernetes (or alter-
natively by Docker Swarm). The full MiCADO framework
has been investigated and implemented in the COLA
(Cloud Orchestration at the Level of Application) project
funded by the European Commission [66].
MiCADO core services are deployed onMiCADOMas-

ter, which is configured as the Kubernetes Master Node
and provides the Docker Engine, Occopus [67] (to scale
VMs), Prometheus38 (for monitoring), Policy Keeper (to
perform decision on scaling), and Submitter (to provide
submission endpoint) microservices. During operation,
MiCADOworkers are instantiated on demand and join the
cluster managed by the MiCADOMaster.
MiCADO supports multi-cloud and cross-cloud

deployments on various public and private cloud infras-
tructures. It also provides interoperability and portability
by means of a TOSCA-based Application Description
Template (ADT), which comprises three sections: a) the
definition of the individual applications making up a
Kubernetes Deployment, b) the specification of the VM
and c) the implementation of scaling policies for both VM
and Kubernetes scaling levels. ADTs can be consumed by
means of a web-based dashboard or a REST API.
Cloud resources are manually selected when config-

uring VMs. The application life-cycle is handled by
MiCADO itself, which leverages Occopus and Kubernetes
for managing VMs and containers, respectively. Only
automatic workflows are supported. MiCADO allows
automated scaling depending on VM and container met-
rics gathered by two built-in exporters on each MiCADO
worker: Prometheus Node Exporter39 and CAdvisor40.
Scaling policies can be defined specifically for the appli-
cations. Lastly, continuous delivery capabilities are sup-
ported via “rolling updates” on Kubernetes Deployments.

MODAClouds
MODAClouds (MOdel-Driven Approach for the design
and execution of applications on multiple Clouds) [58, 59]
is an open-source design-time and run-time platform for
developing and operating multi-cloud applications with
guaranteed QoS. The MODAClouds framework has been
developed within the homonymous project funded by the
European Commission [68].
The MODAClouds Toolbox consists of three main

components: Creator4Clouds, Venues4Clouds, and Ener-
gizer4Clouds. Creator4Clouds is a design-time platform
which allows to design multi-cloud applications, carry out

38https://prometheus.io/
39https://github.com/prometheus/node_exporter
40https://github.com/google/cadvisor

performance and cost evaluation, and plan the deploy-
ment strategy by choosing the service providers that best
suit all business and QoS requirements. Venue4Clouds
is a decision support system (DSS) to choose the most
suitable cloud providers depending on different aspects
such as application architecture, business risk, quality and
cost. Energizer4Clouds is a run-time platform to deploy,
manage, monitor and assure operations of multi-cloud
services. Specifically, Tower4Clouds sub-component is
responsible for collecting, analysing, and storing mon-
itoring information, whereas SpaceOps4Clouds sub-
component enacts application self-adaptation in order to
meet predefined objectives and/or constraints whenever
changes happen.
MODAClouds supports multi-cloud and cross-cloud

deployments on both IaaS and PaaS providers. It lever-
ages an MDE approach in order to support interoper-
ability between cloud providers. In particular, MODA-
CloudML is a set of UML extensions enabling developers
to model multi-cloud applications through three level
of abstractions: Cloud-enabled Computation Indepen-
dent Models (CCIM), Cloud-Provider Independent Mod-
els (CPIM), and Cloud-Provider Specific Models (CPSM).
These models facilitate portability, since they are mostly
reusable. Cloud resources can be automatically selected
and optimised via Venues4Clouds and SpaceDev4Clouds,
and managed through either shell scripts or Puppet. Only
automatic workflows are supported.
Within the MODAClouds runtime environment, the

Models@Runtime engine is responsible for enacting adap-
tation actions such as application scaling and bursting,
data and application migration, and continuous deliv-
ery on both infrastructure and component levels. Failure
recovery is partially supported for data migration and
scaling/bursting scenarios.

SeaClouds
SeaClouds (SEamless Adaptive multi-Cloud management
of service-based applicationS) [60, 61] is an open-source
platform for deploying and managing multi-component
applications over heterogeneous clouds. The SeaClouds
framework has been investigated and implemented within
the homonymous project funded by the European Com-
mission [69].
The SeaClouds architecture comprises six main com-

ponents: Dashboard, Discoverer, Planner, Deployer,Mon-
itor, and SLA Service. The Dashboard allows to model
applications (topology and requirements). The Discov-
erer identifies the available capabilities offered by cloud
providers. The Planner receives the AAM (Abstract Appli-
cation Model) from the Dashboard and creates a set of
ADP (Abstract Deployment Plan) meeting the application
requirements. From the selected plan a Deployable Appli-
cation Model (DAM) is to be generated, containing the

https://prometheus.io/
https://github.com/prometheus/node{_}exporter
https://github.com/google/cadvisor

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 19 of 24

information needed by the Deployer (based on Apache
Brooklyn [47]) to deploy, configure and run the applica-
tion. The Monitor collects infrastructure and application
level metrics from the targeted cloud providers in order
to verify that QoS requirements are met. And if not,
reconfiguration actions can be triggered. The SLA Service
enforces business-oriented policies and business actions
to apply in case of violation.
SeaClouds supports multi-cloud and cross-cloud

deployments on both IaaS and PaaS providers. It also
promotes interoperability and portability by adopting
a TOSCA-based representation for AAMs and ADPs,
as well as a CAMP-based description for DAMs. Cloud
resources are automatically selected and optimised by the
Planner. Changes to the binding can also occur in case of
reconfiguration actions. Only automatic workflows are
supported.
SeaClouds allows repairing actions, such as scaling hor-

izontally and vertically cloud resources, or restarting and
replacing failed components. It also supports replanning
in order to handle the cases that cannot be solved by
repairing. A migration of application modules may hap-
pen in this process. Continuous delivery is not supported
out of the box.

Other initiatives
In this section, we briefly review a number of other
research approaches derived from related EU projects
which address, to varying degrees, multi-cloud orches-
tration, interoperability and portability. Specifically,
a few works target semantic interoperability (i.e.,
moSAIC, cloud4SOA), some explore the benefits of
federated cloud networks (BEACON, ATMOSPHERE),
whereas others focus on application portability via
non-standard (i.e, Claudia, OPTIMIS, ASCETiC,
HARNESS), partially-standard (i.e, soCloud) and
fully-standard (i.e., CELAR, CloudLightning) cloud
modelling.
mOSAIC [70, 71] is an open-source API and platform

for multiple clouds designed and developed within the
homonymous project [72]. Application deployment and
portability across multiple clouds are facilitated by means
of a common API and a high-level abstraction of cloud
resources. mOSAIC also enables application developers
to specify resource requirements in terms of a cloud
ontology, whereas the platform, using a brokering mech-
anism, performs a matchmaking process in order to find
the best-fitting cloud services. In so doing, developers
can postpone their decision on the procurement of cloud
services until runtime. However, even though a platform-
independent component-based programming model is
used, applications need to be implemented by leverag-
ing one of the supported language-dependent APIs (Java,
Python).

Cloud4SOA [73, 74] is a multi-cloud broker-based solu-
tion developed under the homonymous project [75],
which addresses semantic interoperability and portability
challenges at the PaaS layer. It supports multi-platform
matchmaking, management, monitoring and migration
of applications by semantically interconnecting heteroge-
neous PaaS offerings. Similar to mOSAIC, Cloud4SOA
introduces a cloud ontology establishing a set of abstrac-
tions among different PaaS offerings while exposing a
multi-PaaS standardised API for the seamless application
deployment and management across different cloud plat-
forms. Despite being independent of specific APIs offered
by the underlying PaaS offerings, adapters acting as a mid-
dleware between the Cloud4SOA API and native PaaS
APIs are still needed.
Themain goal of the BEACON project [76] is to develop

techniques to federate cloud network resources, and to
enable an efficient and secure deployment of federated
cloud applications. Specifically, the proposed approach is
to build a homogeneous virtualisation layer on top of het-
erogeneous underlying physical networks, computing and
storage infrastructures. By leveraging the combination of
Cloud federation, Software Defined Networking (SDN),
and Network Function Virtualization (NFV) technolo-
gies, the project has delivered an innovative design of a
Federation Management system acting as an external ser-
vice provider dealing with federated networking services
among multiple federated OpenStack Clouds [77].
ATMOSPHERE [78] aims to design and implement a

framework and platform relying on lightweight virtuali-
sation, hybrid resources and Europe and Brazil federated
infrastructures to develop, build, deploy, measure and
evolve trustworthy, cloud-enabled applications. Orches-
tration and deployment of complex application topologies
is achieved through the TOSCA standard. In the con-
text of the project, partners developed a federated net-
work architecture [79] by creating multi-tenant overlay
networks across different sites. The developed frame-
work offers services such as distribution and inter-site
migration of VMs, resource management, and network
management.
Claudia [80] is a service management system imple-

menting an abstraction layer that allows for the automatic
service deployment and scaling depending on both infras-
tructure and service status. Conversely to mOSAIC and
Cloud4SOA, each service in Claudia is defined by its cor-
responding Service Description File (SDF) whose syntax is
based on the OVF standard, thereby providing vendor and
platform portability. However, special OVF extensions
must be defined in order to support automatic scalability,
deployment-time customisation and external connectivity
specification.
OPTIMIS [81] is a toolkit which addresses and opti-

mises the whole service lifecycle on the basis of aspects

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 20 of 24

such as trust, risk, eco-efficiency and cost, taking into
consideration a number of cloud scenarios, namely, cloud
federation, multi-cloud, hybrid cloud. However, regard-
ing multi-cloud, interoperability with non-OPTIMIS
providers can only be achieved by using APIs and adapters
externally to the OPTIMIS components. According to
OPTIMIS programming model, each service is defined
as a collection of core elements being packed along with
any external software components into VM images. Simi-
lar to Claudia, these VM images are configured by means
of a service manifest based on the OVF standard, but
a set of OVF extensions are required in order to spec-
ify the functional and non-functional requirements of the
service.
ASCETiC [82] is an open architecture and approach to

multi-cloud optimising energy efficiency, designed within
the homonymous EU project [83]. Analogous to OPTI-
MIS, the OVF specification is employed to define a com-
plete set of VMs to be deployed at an IaaS provider.
Nevertheless, OVF extensions are necessary in order to
support SLA negotiation and self-adaptation rules.
The HARNESS project [84] develops a cloud comput-

ing platform incorporating non-traditional and heteroge-
neous computational, networking and storage resources
into the data centre stack to provide high performance
at low cost. HARNESS envisions an enhanced cloud PaaS
software stack that not only supports existing commodity
technologies, but also incorporates heterogeneous tech-
nologies such as Dataflow Engines (DFEs), programmable
routers and different types of storage devices [85]. The
project demonstrated its results via extensions to Open-
Stack.
soCloud [86] is a service-oriented component-based

PaaS for managing portability, elasticity, provisioning,
and high availability across multiple clouds. Application
descriptors are based on the OASIS Service Compo-
nent Architecture (SCA) standard [87]. However, since
the SCA model doesn’t allow to define non-functional
requirements, special SCA extensions are required. A cus-
tom DSL is also used in order to describe elasticity. Addi-
tionaly, not only does soCloud support only SCA-based
applications, but maintaining the mappings to various
cloud providers and keeping up with recent features of
supported clouds are a concern.
CELAR [88, 89] is a resource management platform able

to automatically deploy, monitor and scale applications
over a cloud infrastructure. Applications are described
using TOSCA, which ensures the portability of applica-
tion descriptions across different IaaS platforms. How-
ever, every time a new application is to be deployed,
users need to issue the request to the appropriate CELAR
Server instance inside the cloud they want to deploy their
application to. In contrast to mOSAIC, cloud4SOA and
ASCETiC, no brokering mechanism is defined in order

to best fit cloud resource requirements. Furthermore,
cross-cloud is not supported.
CloudLightning [90] is a heterogeneous cloud service

management and delivery model developed within the
homonymous EU project [91]. Based on the principles
of self-organisation and self-management, CloudLight-
ning allows users to design and deploy their applica-
tions without the need for selecting the most suitable
resources. This separation of concerns is made possi-
ble using a CloudLightning-specific service description
language (CL-SDL), which extends TOSCA in order to
capture specific attributes . The declarative approach is
enriched with resource discovery mechanisms allowing
easier identification and consumption of a variety of het-
erogeneous resources. CloudLightning proposes a solu-
tion based on a Gateway Service, which relies on two
open-source tools: Alien4Cloud acting as the Gateway
Service UI and Brooklyn-TOSCA41 acting as the deploy-
ment orchestrator. In view of the above, the same remarks
made in “Brooklyn” section are applicable to CloudLight-
ning.

Critical discussion
Tables 2, 3, 4 and 5 summarise the CROFs presented
in “Review of cROFs” section by outlining the features
debated in “Analysis framework” section. We discuss the
main characteristics of these frameworks next.
Most of the reviewed CROFs provide different access

modes, including web-based dashboards and APIs,
and allow both multi-cloud and cross-cloud deploy-
ments, except for Heat and CloudFormation which, as
infrastructure-centric services, only support their own
IaaS providers (i.e., OpenStack and Amazon, respec-
tively). Besides, some of them natively support deploy-
ments on BYON (e.g., Cloudify, Brooklyn, Roboconf,
SeaClouds). Interoperability between cloud providers is
mainly achieved by means of open standards and open
libraries/abstraction layers (e.g. jclouds). Open standards
appear to be gaining ground, especially in academic sce-
narios. As such, a number of academic CROFs pro-
vide interoperability via OCCI (e.g., Roboconf) or CDMI
(e.g., INDIGO-DataCloud) support, while others do via
TOSCA (MiCADO, SeaClouds). Despite being the focus
of previous research efforts (e.g., mOSAIC, Cloud4SOA),
semantic approaches seem to be no longer a priority
compared to the adoption of open standards. Of all
the initiatives, MODAClouds is the only one to employ
model-driven methodologies.
With regard to application portability, CROFs from

both industry and academia are placing ever-increasing
importance on modelling standards. However, while tak-
ing TOSCA (e.g., Cloudify, MiCADO) and CAMP (e.g.,

41https://github.com/cloudsoft/brooklyn-tosca

https://github.com/cloudsoft/brooklyn-tosca

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 21 of 24

Brooklyn, SeaClouds) as reference models, they happen
to customise and extend standard types. Thus, a further
effort would be appropriate in order to ensure greater
compliance with the aforementioned specifications. Aside
from the adoption of standard models, model reusability
is encouraged by means of modules shared either locally
or remotely. Besides, since containers provide improved
application encapsulation and abstraction from resources,
most of the CROFs support containers as well as container
orchestration.
As regards resource provisioning, there are different

aspects of the matter that need to be considered, such as:
selection, configuration and deployment of resources. In
multi-cloud scenarios, selection is far from being a trivial
task due to the diversity of cloud services’ characteris-
tics and QoS. While manual selection is supported in the
majority of CROFs, automatic and optimised selections
are almost exclusively supported by academic CROFs. The
optimised selection leverages QoS and technical require-
ments, and is carried out either based on static informa-
tion on the service quality provided by cloud providers
or through dynamic negotiation of SLAs. A few multi-
cloud projects (e.g., INDIGO-DataCloud, MODAClouds,
SeaClouds) provide support for SLA management, even
though multi-cloud SLAs are not covered. Limited sup-
port is currently available for dynamic selection (i.e.,
SeaClouds).
Resource deployment can be manual or automatic.

While most commercial CROFs support both manual
and automatic workflows, academic CROFs exclusively
support automatic ones. Using standard models such as
TOSCA, where applicable, proves useful both for defining
a custom workflow and for automatically generating one.
However, since current standards lack support for mod-
elling the semantics related to the instantiation of relation-
ships between component instances, the actual wiring of
component instances depends on the capabilities offered
by the CROF enacting the deployment. On that note,
standard extensions in support of sophisticated wiring on
instance level would be desirable. As for resource configu-
ration, on the one hand scripts are extensively supported,
but on the other hand configuration management tools
are mostly supported by commercial CROFs. Nonethe-
less, a few academic projects (e.g., INDIGO-DataCloud
and MODAClouds) exploit these tools in order to enact
DevOps practices as well.
Monitoring plays a key role in keeping track of the status

of applications as well as physical and virtual resources.
Monitoring metrics at different abstraction levels (e.g.,
infrastructure and application ones) and capturing depen-
dencies between these levels allow to perform root cause
analysis, such that any issues at infrastructure level can
automatically lead to run-time infrastructure adaptation
which best fits run-time application requirements. While

infrastructure metrics are widely supported by both com-
mercial and academic CROFs, application and custom
metrics necessitate further investigation. Metric aggre-
gation mechanisms are available for a large majority of
CROFs. Nevertheless, in light of multi-cloud scenarios,
where applications and resources may be largely dis-
tributed, metric collection and aggregation from hetero-
geneous cloud environments are necessary. As a result,
standardised interfaces and formats should be inspected.
Monitoring data allows for different purposes such

as enforcing SLAs, enabling elasticity, ensuring QoS.
SLAs can be used as a basis for cloud services and
respective applications to be managed during their life-
cycle. Multi-cloud management requires specific mech-
anisms for run-time adaptation across a diversity of
cloud set-ups, including scalability, migration, fault-
tolerance, continuous delivery. While reactive approaches
to run-time adaptation are fairly consolidated among
all CROFs, predictive approaches (based on work-
load prediction models and machine learning opti-
misation) are only supported in some commercial
CROFs (e.g., AWS CloudFormation) and should be more
explored.
Both academic and commercial CROFs largely provide

support for threshold-based horizontal scaling. Policy-
based approaches, especially in the academic landscape,
are gaining in importance as well. Migration support
is still limited in both industry and academia, as it is
closely linked to portability in all its facets, i.e., VM porta-
bility, application portability, data portability. Although
platform-independent standards (TOSCA) and virtuali-
sation techniques (containers) have improved application
encapsulation and abstraction from resources, platform-
independent data representation and standardisation of
data import and export across diverse and heteroge-
neous clouds need to be inspected. In this regard,
MODAClouds provides a solution to the data migra-
tion issue, albeit in the context of scalable NoSQL
databases.
Both academic and commercial CROFs support failure

recovery mechanisms based on restarting/replacing failed
components or, in a worst-case scenario, rolling back
entire application stacks. Of all academic CROFs, Cloudi-
ator, MODAClouds and SeaClouds allow to identify
abnormal and undesirable states of the system and apply
a limited set of autonomic actions. However, the emer-
gence of decentralised multi-cloud setups connecting a
wider variety of entities and resources requires autonomic
management systems that consider self-organisation, self-
management and self-healing across a diversity of cloud
deployments. Continuous delivery is well supported in the
commercial landscape, and it is also gaining ground in the
academic one because of the ever-growing use of DevOps
methodologies.

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 22 of 24

Conclusion
Cloud computing technology has greatly evolved over
the past few years, transforming the traditional infras-
tructure, platform and software resources into elastic and
on-demand virtual components. However, heterogeneous
and multi-layer resources have to be orchestrated in an
effective way in order to ensure that end-users are pro-
vided with acceptable quality levels.
In this work we thoroughly analysed the cloud orches-

tration landscape: after presenting a taxonomy of relevant
features and dimensions, we mapped and evaluated sev-
eral cloud resource orchestration frameworks against it,
especially focusing on multi-cloud capabilities. This sys-
tematic analysis has allowed to identify key open research
issues, also proposing a set of future research directions in
the cloud orchestration scenario.

Abbreviations
CROF: Cloud Resource Orchestration Framework; MDE: Model Driven
Engineering; IaaS: Infrastructure as a Service; PaaS: Platform as a Service; CMP:
Cloud Management Platform; SLA: Service Level Agreement; TOSCA: Topology
and Orchestration Specification for Cloud Applications; VM: Virtual Machine;
BYON: Bring Your Own Node; CI/CD: Continuous Integration/Continuous
Delivery

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed equally to the article. The author(s) read and approved
the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 April 2020 Accepted: 4 August 2020

References
1. RightScale (2019) RightScale 2019 State of the Cloud Report. https://info.

flexera.com/SLO-CM-WP-State-of-the-Cloud-2019. Accessed 12 Oct 2019
2. Ranjan R, Benatallah B, Dustdar S, Papazoglou MP (2015) Cloud resource

orchestration programming: Overview, issues, and directions. IEEE
Internet Comput 19(5):46–56. https://doi.org/10.1109/MIC.2015.20

3. Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R (2017) A
Taxonomy and Survey of Cloud Resource Orchestration Techniques. ACM
Comput Surv 50(2):26–12641. https://doi.org/10.1145/3054177

4. Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J
(2015) Cloud Orchestration Features: Are Tools Fit for Purpose?,. In: 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC). pp 95–101. https://doi.org/10.1109/UCC.2015.25

5. Bousselmi K, Brahmi Z, Gammoudi MM (2014) Cloud services
orchestration: A comparative study of existing approaches. In: 28th
International Conference on Advanced Information Networking and
Applications Workshops. pp 410–416. https://doi.org/10.1109/WAINA.
2014.72

6. Grozev N, Buyya R (2014) Inter-cloud architectures and application
brokering: taxonomy and survey. Softw Pract Experience 44(3):369–390.
https://doi.org/10.1002/spe.2168

7. Ferry N, Rossini A, Chauvel F, Morin B, Solberg A (2013) Towards
Model-Driven Provisioning, Deployment, Monitoring, and Adaptation of
Multi-cloud Systems. In: IEEE Sixth International Conference on Cloud
Computing. pp 887–894. https://doi.org/10.1109/CLOUD.2013.133

8. Petcu D (2014) Consuming resources and services from multiple clouds. J
Grid Comput 12(2):321–345. https://doi.org/10.1007/s10723-013-9290-3

9. Petcu D, Vasilakos A (2014) Portability in Clouds: Approaches and
Research Opportunities. Scalable Comput Pract Experience
15(3):251–270. https://doi.org/10.12694/scpe.v15i3.1019

10. Ferry N, Rossini A (2018) CloudMF: Model-Driven Management of
Multi-Cloud Applications. ACM Trans Internet Technol 18(2):16–24.
https://doi.org/10.1145/3125621

11. Ferrer AJ (2016) Inter-cloud research: Vision for 2020. Procedia Comput
Sci 97:140–143. https://doi.org/10.1016/j.procs.2016.08.292

12. Buyya R, Srirama SN, Casale G, Calheiros R, Simmhan Y, Varghese B,
Gelenbe E, Javadi B, Vaquero LM, Netto MAS, Toosi AN, Rodriguez MA,
Llorente IM, Vimercati SDCD, Samarati P, Milojicic D, Varela C, Bahsoon R,
Assuncao MDD, Rana O, Zhou W, Jin H, Gentzsch W, Zomaya AY, Shen H
(2018) A Manifesto for Future Generation Cloud Computing: Research
Directions for the Next Decade. ACM Comput Surv 51(5):105–110538.
https://doi.org/10.1145/3241737

13. Lewis GA (2013) Role of standards in cloud-computing interoperability. In:
46th Hawaii International Conference on System Sciences. pp 1652–1661.
https://doi.org/10.1109/HICSS.2013.470

14. Badger L, Bohn R, Chandramouli R, Grance T, Karygiannis T, Patt-Corner R,
Voas E (2010) Cloud Computing Use Cases. https://www.nist.gov/itl/use-
cases. Accessed 12 Oct 2019

15. Ahronovitz M, et al. (2010) Cloud Computing Use Cases White Paper
Version 4.0. http://www.cloud-council.org/Cloud_Computing_Use_
Cases_Whitepaper-4_0.pdf. Accessed 12 Oct 2019

16. Distributed Management Task Force (2010) Use Cases and Interactions for
Managing Clouds. https://www.dmtf.org/sites/default/files/standards/
documents/DSP-IS0103_1.0.0.pdf. Accessed 12 Oct 2019

17. Zhang Z, Wu C, Cheung DWL (2013) A survey on cloud interoperability:
Taxonomies, standards, and practice. SIGMETRICS Perform Eval Rev
40(4):13–22. https://doi.org/10.1145/2479942.2479945

18. Stravoskoufos K, Preventis A, Sotiriadis S, Petrakis EGM (2014) A Survey on
Approaches for Interoperability and Portability of Cloud Computing
Services. In: Proceedings of the 4th International Conference on Cloud
Computing and Services Science (CLOSER2014). pp 112–117. https://doi.
org/10.5220/0004856401120117

19. García ÁL, del Castillo EF, Fernández PO (2016) Standards for enabling
heterogeneous IaaS cloud federations. Comput Stand Interfaces
47:19–23. https://doi.org/10.1016/j.csi.2016.02.002

20. Gartner (2018) Competitive Landscape: Cloud Service Brokerage. https://
www.gartner.com/en/documents/3889023/competitive-landscape-
cloud-service-brokerage. Accessed 12 Oct 2019

21. Liu F, Tong J, Mao J, Bohn RB, Messina JV, Badger ML, Leaf DM (2011) NIST
Cloud Computing Reference Architecture. https://www.nist.gov/
publications/nist-cloud-computing-reference-architecture. Accessed 12
Oct 2019

22. Elhabbash A, Samreen F, Hadley J, Elkhatib Y (2019) Cloud brokerage: A
systematic survey. ACM Comput Surv 51(6):119–111928. https://doi.org/
10.1145/3274657

23. Bernstein D, Ludvigson E, Sankar K, Diamond S, Morrow M (2009)
Blueprint for the Intercloud - Protocols and Formats for Cloud Computing
Interoperability. In: Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services. ICIW ’09.
pp 328–336. https://doi.org/10.1109/ICIW.2009.55

24. Global Inter-cloud Technology Forum (2010) Use Cases and Functional
Requirements for Inter-Cloud Computing: A white paper. http://www.
gictf.jp/doc/GICTF_Whitepaper_20100809.pdf. Accessed 12 Oct 2019

25. Petcu D (2013) Multi-cloud: Expectations and current approaches. In:
Proceedings of the 2013 International Workshop on Multi-cloud
Applications and Federated Clouds. MultiCloud ’13. ACM, New York.
pp 1–6. https://doi.org/10.1145/2462326.2462328

26. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing
environments: Challenges, taxonomy, and survey. ACM Comput Surv
47(1):7–1747. https://doi.org/10.1145/2593512

27. Nogueira E, Moreira A, Lucrédio D, Garcia V, Fortes R (2016) Issues on
developing interoperable cloud applications: definitions, concepts,

https://info.flexera.com/SLO-CM-WP-State-of-the-Cloud-2019
https://info.flexera.com/SLO-CM-WP-State-of-the-Cloud-2019
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1145/3054177
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1109/WAINA.2014.72
https://doi.org/10.1109/WAINA.2014.72
https://doi.org/10.1002/spe.2168
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1007/s10723-013-9290-3
https://doi.org/10.12694/scpe.v15i3.1019
https://doi.org/10.1145/3125621
https://doi.org/10.1016/j.procs.2016.08.292
https://doi.org/10.1145/3241737
https://doi.org/10.1109/HICSS.2013.470
https://www.nist.gov/itl/use-cases
https://www.nist.gov/itl/use-cases
http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf
https://doi.org/10.1145/2479942.2479945
https://doi.org/10.5220/0004856401120117
https://doi.org/10.5220/0004856401120117
https://doi.org/10.1016/j.csi.2016.02.002
https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage
https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage
https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage
https://www.nist.gov/publications/nist-cloud-computing-reference-architecture
https://www.nist.gov/publications/nist-cloud-computing-reference-architecture
https://doi.org/10.1145/3274657
https://doi.org/10.1145/3274657
https://doi.org/10.1109/ICIW.2009.55
http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf
http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf
https://doi.org/10.1145/2462326.2462328
https://doi.org/10.1145/2593512

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 23 of 24

approaches, requirements, characteristics and evaluation models. J Softw
Eng Res Dev 4(1):7. https://doi.org/10.1186/s40411-016-0033-6

28. Kaur K, Sharma DS, Kahlon DKS (2017) Interoperability and portability
approaches in inter-connected clouds: A review. ACM Comput Surv
50(4):49–14940. https://doi.org/10.1145/3092698

29. Bellendorf J, Mann ZÁ (2018) Cloud Topology and Orchestration Using
TOSCA: A Systematic Literature Review. In: Kritikos K, Plebani P, de Paoli F
(eds). Service-Oriented and Cloud Computing. pp 207–215. https://doi.
org/10.1007/978-3-319-99819-0_16

30. Domaschka J, Griesinger F, Baur D, Rossini A (2015) Beyond Mere
Application Structure Thoughts on the Future of Cloud Orchestration
Tools. Procedia Comput Sci 68:151–162. https://doi.org/10.1016/j.procs.
2015.09.231

31. Khoshkbarforoushha A, Wang M, Ranjan R, Wang L, Alem L, Khan SU,
Benatallah B (2016) Dimensions for evaluating cloud resource
orchestration frameworks. Computer 49(2):24–33. https://doi.org/10.
1109/MC.2016.56

32. Clusters of European Projects on Cloud (2015) Inter-cloud Challenges,
Expectations and Issues Cluster Position Paper: Initial Research Roadmap
and Project’s Classification. https://eucloudclusters.wordpress.com/
future-cloud. Accessed 12 Oct 2019

33. Clusters of European Projects on Cloud (2016) Inter-cloud Challenges,
Expectations and Issues Cluster Position Paper: Research Roadmap
Update. https://eucloudclusters.wordpress.com/future-cloud. Accessed
12 Oct 2019

34. Clusters of European Projects on Cloud (2017) Future Cloud Cluster Vision
for 2030. https://eucloudclusters.wordpress.com/future-cloud. Accessed
12 Oct 2019

35. GigaSpaces Research CloudifyTeam (2016) Cloud Management in the
Enterprise - An Overview of Orchestration vs. PaaS vs. CMP. https://
cloudify.co/blog/cloud-management-roundup-orchestration-paas-
cmp/. Accessed 12 Oct 2019

36. OASIS (2013) Topology and Orchestration Specification for Cloud
Applications Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/
os/TOSCA-v1.0-os.html. Accessed 6 July 2020

37. Buyya R, Vecchiola C, Selvi ST (2013) Chapter 10 - Cloud Applications. In:
Buyya R, Vecchiola C, Selvi ST (eds). Mastering Cloud Computing. Morgan
Kaufmann, Boston. pp 353–371. https://doi.org/10.1016/B978-0-12-
411454-8.00010-3

38. Costache S, Dib D, Parlavantzas N, Morin C (2017) Resource management
in cloud platform as a service systems: Analysis and opportunities. J Syst
Softw 132:98–118. https://doi.org/10.1016/j.jss.2017.05.035

39. Kolb S, Wirtz G (2014) Towards Application Portability in Platform as a
Service. In: IEEE 8th International Symposium on Service Oriented System
Engineering. pp 218–229. https://doi.org/10.1109/SOSE.2014.26

40. Oberle K, Fisher M (2010) ETSI CLOUD - Initial Standardization
Requirements for Cloud Services. In: Proceedings of the 7th International
Conference on Economics of Grids, Clouds, Systems, and Services.
GECON’10. Springer, Berlin, Heidelberg. pp 105–115. https://doi.org/10.
1007/978-3-642-15681-6_8

41. OASIS (2014) Cloud Application Management for Platforms Version 1.1.
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html.
Accessed 12 Oct 2019

42. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007)
Container-based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. In: Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007.
EuroSys ’07. ACM, New York. pp 275–287. https://doi.org/10.1145/
1272996.1273025

43. Singh S, Singh N (2016) Containers & Docker: Emerging roles & future of
Cloud technology. In: 2nd International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT).
pp 804–807. https://doi.org/10.1109/ICATCCT.2016.7912109

44. Komarek A, Pavlik J, Sobeslav V (2017) Hybrid System Orchestration with
TOSCA and Salt. J Eng Appl Sci 12(9):2396–2401. https://doi.org/10.
36478/jeasci.2017.2396.2401

45. OpenStack (2016) OpenStack Heat. https://wiki.openstack.org/wiki/Heat.
Accessed 12 Oct 2019

46. Cloudify (2019) Cloudify. http://cloudify.co/. Accessed 12 Oct 2019
47. The Apache Software Foundation (2016) The Apache Brooklyn project.

https://brooklyn.apache.org/. Accessed 12 Oct 2019

48. Apache (2015) Apache Stratos. https://stratos.apache.org/. Accessed 12
Oct 2019

49. FastConnect (2018) Alien4Cloud. https://alien4cloud.github.io. Accessed
12 Oct 2019

50. HashiCorp (2019) HashiCorp Terraform. https://www.terraform.io/.
Accessed 12 Oct 2019

51. Amazon (2016) Amazon CloudFormation. https://aws.amazon.com/
cloud\discretionary-for\discretionary-ma\discretionary-tion/. Accessed
12 Oct 2019

52. Baur D, Domaschka J (2016) Experiences from building a cross-cloud
orchestration tool. In: Proceedings of the 3rd Workshop on CrossCloud
Infrastructures & Platforms. CrossCloud ’16. pp 4–146. https://doi.org/10.
1145/2904111.2904116

53. Baur D, Seybold D, Griesinger F, Masata H, Domaschka J (2018) A
Provider-Agnostic Approach to Multi-cloud Orchestration Using a
Constraint Language. In: 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). pp 173–182. https://doi.
org/10.1109/CCGRID.2018.00032

54. Pham LM, Tchana A, Donsez D, de Palma N, Zurczak V, Gibello P (2015)
Roboconf: A Hybrid Cloud Orchestrator to Deploy Complex Applications.
In: IEEE 8th International Conference on Cloud Computing. pp 365–372.
https://doi.org/10.1109/CLOUD.2015.56

55. Salomoni D, Campos I, Gaido L, et al. (2016) Indigo-datacloud:
foundations and architectural description of a platform as a service
oriented to scientific computing. CoRR abs/1603.09536. 1603.09536.
Accessed 6 July 2020

56. Salomoni D, Campos I, Gaido L, et al. (2018) INDIGO-DataCloud: a
Platform to Facilitate Seamless Access to E-Infrastructures. J Grid Comput
16(3):381–408. https://doi.org/10.1007/s10723-018-9453-3

57. Kiss T, Kacsuk P, Kovacs J, Rakoczi B, Hajnal A, Farkas A, Gesmier G,
Terstyanszky G (2019) MiCADO—Microservice-based Cloud
Application-level Dynamic Orchestrator. Futur Gener Comput Syst
94:937–946. https://doi.org/10.1016/j.future.2017.09.050

58. Ardagna D, Di Nitto E, Mohagheghi P, Mosser S, Ballagny C, D’Andria F,
Casale G, Matthews P, Nechifor C, Petcu D, Gericke A, Sheridan C (2012)
MODAClouds: A model-driven approach for the design and execution of
applications on multiple Clouds. In: 4th International Workshop on
Modeling in Software Engineering (MISE). pp 50–56. https://doi.org/10.
1109/MISE.2012.6226014

59. Nitto ED, Matthews P, Petcu D, Solberg A (2017) Model-Driven
Development and Operation of Multi-Cloud Applications: The
MODAClouds Approach. https://doi.org/10.1007/978-3-319-46031-4

60. Brogi A, Carrasco J, Cubo J, D’Andria F, Ibrahim A, Pimentel E, Soldani J
(2014) SeaClouds: Seamless adaptive multi-cloudmanagement of service-
based applications. In: 17th Conferencia Iberoamericana en Software
Engineering (CIbSE 2014). Curran Associates, Inc., Pucon. pp 95–108

61. Brogi A, Fazzolari M, Ibrahim A, Soldani J, Wang P, Carrasco J, Cubo J,
Durán F, Pimentel E, Di Nitto E, D’Andria F (2015) Adaptive management
of applications across multiple clouds: The SeaClouds Approach. CLEI
Electron J 18:2–2. https://doi.org/10.19153/cleiej.18.1.1

62. University of Ulm (2015) Cloudiator. http://cloudiator.org/. Accessed 12
Oct 2019

63. Linagora (2013) Roboconf. http://roboconf.net. Accessed 12 Oct 2019
64. Caballer M, Zala S, García ÁL, Moltó G, Fernández PO, Velten M (2018)

Orchestrating Complex Application Architectures in Heterogeneous
Clouds. J Grid Comput 16(1):3–18. https://doi.org/10.1007/s10723-017-
9418-y

65. INDIGO consortium (2017) The INDIGO-DataCloud project. https://www.
indigo-datacloud.eu/. Accessed 12 Oct 2019

66. COLA consortium (2017) The COLA Project. https://project-cola.eu/.
Accessed 12 Oct 2019

67. Kovács J, Kacsuk P (2018) Occopus: a multi-cloud orchestrator to deploy
and manage complex scientific infrastructures. J Grid Comput
16(1):19–37. https://doi.org/10.1007/s10723-017-9421-3

68. MODAClouds consortium (2012) The MODAClouds project. http://
multiclouddevops.com/. Accessed 12 Oct 2019

69. SeaClouds consortium (2013) The SeaClouds project. http://www.
seaclouds-project.eu/. Accessed 12 Oct 2019

70. Petcu D, Macariu G, Panica S, Crăciun C (2013) Portable Cloud
applications—From theory to practice. Futur Gener Comput Syst
29(6):1417–1430. https://doi.org/10.1016/j.future.2012.01.009

https://doi.org/10.1186/s40411-016-0033-6
https://doi.org/10.1145/3092698
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1016/j.procs.2015.09.231
https://doi.org/10.1016/j.procs.2015.09.231
https://doi.org/10.1109/MC.2016.56
https://doi.org/10.1109/MC.2016.56
https://eucloudclusters.wordpress.com/future-cloud
https://eucloudclusters.wordpress.com/future-cloud
https://eucloudclusters.wordpress.com/future-cloud
https://eucloudclusters.wordpress.com/future-cloud
https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/
https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/
https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://doi.org/10.1016/B978-0-12-411454-8.00010-3
https://doi.org/10.1016/B978-0-12-411454-8.00010-3
https://doi.org/10.1016/j.jss.2017.05.035
https://doi.org/10.1109/SOSE.2014.26
https://doi.org/10.1007/978-3-642-15681-6_8
https://doi.org/10.1007/978-3-642-15681-6_8
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1109/ICATCCT.2016.7912109
https://doi.org/10.36478/jeasci.2017.2396.2401
https://doi.org/10.36478/jeasci.2017.2396.2401
https://wiki.openstack.org/wiki/Heat
http://cloudify.co/
https://brooklyn.apache.org/
https://stratos.apache.org/
https://alien4cloud.github.io
https://www.terraform.io/
https://aws.amazon.com/clouddiscretionary {-}{}{}fordiscretionary {-}{}{}madiscretionary {-}{}{}tion/
https://aws.amazon.com/clouddiscretionary {-}{}{}fordiscretionary {-}{}{}madiscretionary {-}{}{}tion/
https://doi.org/10.1145/2904111.2904116
https://doi.org/10.1145/2904111.2904116
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/CLOUD.2015.56
http://arxiv.org/abs/1603.09536
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1016/j.future.2017.09.050
https://doi.org/10.1109/MISE.2012.6226014
https://doi.org/10.1109/MISE.2012.6226014
https://doi.org/10.1007/978-3-319-46031-4
https://doi.org/10.19153/cleiej.18.1.1
http://cloudiator.org/
http://roboconf.net
https://doi.org/10.1007/s10723-017-9418-y
https://doi.org/10.1007/s10723-017-9418-y
https://www.indigo-datacloud.eu/
https://www.indigo-datacloud.eu/
https://project-cola.eu/
https://doi.org/10.1007/s10723-017-9421-3
http://multiclouddevops.com/
http://multiclouddevops.com/
http://www.seaclouds-project.eu/
http://www.seaclouds-project.eu/
https://doi.org/10.1016/j.future.2012.01.009

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 24 of 24

71. Petcu D, Martino BD, Venticinque S, Rak M, Máhr T, Lopez GE, Brito F,
Cossu R, Stopar M, Šperka S, Stankovski V (2013) Experiences in building a
mOSAIC of clouds. J Cloud Comput Adv Syst Appl 2(1):12. https://doi.org/
10.1186/2192-113X-2-12

72. mOSAIC consortium (2010) The mOSAIC project. http://www.mosaic-
cloud.eu/. Accessed 12 Oct 2019

73. DAndria F, Bocconi S, Cruz JG, Ahtes J, Zeginis D (2012) Cloud4SOA:
Multi-cloud Application Management Across PaaS Offerings. In: 14th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. pp 407–414. https://doi.org/10.1109/SYNASC.2012.
65

74. Kamateri E, Loutas N, Zeginis D, Ahtes J, D’Andria F, Bocconi S, Gouvas P,
Ledakis G, Ravagli F, Lobunets O, Tarabanis KA (2013) Cloud4SOA: A
Semantic-Interoperability PaaS Solution for Multi-cloud Platform
Management and Portability. In: Lau K-K, Lamersdorf W, Pimentel E (eds).
Service-Oriented and Cloud Computing, ESOCC 2013. pp 64–78. https://
doi.org/10.1007/978-3-642-40651-5_6

75. Cloud4SOA consortium (2010) The Cloud4SOA project. http://www.
cloud4soa.eu/. Accessed 12 Oct 2019

76. BEACON consortium (2015) The BEACON project: Enabling Federated
Cloud Networking. http://www.beacon-project.eu/. Accessed 12 Oct
2019

77. Celesti A, Levin A, Massonet P, Schour L, Villari M (2016) Federated
networking services in multiple openstack clouds. pp 338–352. https://
doi.org/10.1007/978-3-319-33313-7_26

78. ATMOSPHERE consortium (2017) The ATMOSPHERE project: Adaptive,
Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid,
Ecosystem for Resilient Cloud Computing. https://www.atmosphere-
eubrazil.eu/. Accessed 12 Oct 2019

79. Castañeda IA, Blanquer I, de Alfonso C (2019) Easing the deployment and
management of cloud federated networks across virtualised clusters. In:
Proceedings of the 9th International Conference on Cloud Computing
and Services Science, CLOSER 2019, Heraklion, Crete, Greece, May 2-4,
2019. pp 601–608. https://doi.org/10.5220/0007877406010608

80. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS,
Llorente IM (2010) From infrastructure delivery to service management in
clouds. Futur Gener Comput Syst 26(8):1226–1240. https://doi.org/10.
1016/j.future.2010.02.013

81. Ferrer AJ, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent
R, Guitart J, Badia RM, Djemame K, Ziegler W, Dimitrakos T, Nair SK,
Kousiouris G, Konstanteli K, Varvarigou T, Hudzia B, Kipp A, Wesner S,
Corrales M, Forgó N, Sharif T, Sheridan C (2012) OPTIMIS: A holistic
approach to cloud service provisioning. Futur Gener Comput Syst
28(1):66–77. https://doi.org/10.1016/j.future.2011.05.022

82. Ferrer AJ, Lordan F, Ortiz D, Guitart J, Macias M, Panuccio P, M. Badia R,
Ponsard C, Temporale C, García D, Sirvent R, Deprez J, Sommacampagna
D, Djemame K, Armstrong D, Agiatzidou E, Ejarque J, Blasi L, Kammer M
(2014) Ascetic - adapting service lifecycle towards efficient clouds. In:
European Project Space on Information and Communication Systems -
EPS Barcelona. SciTePress, Barcelona. pp 89–106. https://doi.org/10.5220/
0006183400890106

83. ASCETiC consortium (2013) The ASCETiC project. http://ascetic-project.
eu/. Accessed 12 Oct 2019

84. HARNESS consortium (2012) The HARNESS project: Hardware and
Network-Enhanced Software Systems for Cloud Computing. http://www.
harness-project.eu/. Accessed 12 Oct 2019

85. Coutinho JGF, Pell O, O’Neill E, Sanders P, McGlone J, Grigoras P, Luk W,
Ragusa C (2014) Harness project: Managing heterogeneous computing
resources for a cloud platform. In: Goehringer D, Santambrogio MD,
Cardoso JMP, Bertels K (eds). Reconfigurable Computing: Architectures,
Tools, and Applications. Springer. pp 324–329. https://doi.org/10.1007/
978-3-319-05960-0_36

86. Paraiso F, Merle P, Seinturier L (2016) soCloud: a service-oriented
component-based PaaS for managing portability, provisioning, elasticity,
and high availability across multiple clouds. Computing 98(5):539–565.
https://doi.org/10.1007/s00607-014-0421-x

87. OASIS (2011) Service Component Architecture (SCA). http://www.oasis-
opencsa.org/sca. Accessed 12 Oct 2019

88. Giannakopoulos I, Papailiou N, Mantas C, Konstantinou I, Tsoumakos D,
Koziris N (2014) CELAR: Automated application elasticity platform. In: IEEE

International Conference on Big Data (Big Data). pp 23–25. https://doi.
org/10.1109/BigData.2014.7004481

89. CELAR consortium (2012) The CELAR project. http://www.
celarcloudproject.eu/. Accessed 12 Oct 2019

90. Selea T, Drăgan I, Fortiş T-F (2017) The CloudLightning Approach to
Cloud-user Interaction. In: Proceedings of the 1st International Workshop
on Next Generation of Cloud Architectures. CloudNG:17. pp 4–145.
https://doi.org/10.1145/3068126.3068130

91. CloudLightning consortium (2018) The CloudLightning project. https://
cloudlightning.eu/. Accessed 12 Oct 2019

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/2192-113X-2-12
https://doi.org/10.1186/2192-113X-2-12
http://www.mosaic-cloud.eu/
http://www.mosaic-cloud.eu/
https://doi.org/10.1109/SYNASC.2012.65
https://doi.org/10.1109/SYNASC.2012.65
https://doi.org/10.1007/978-3-642-40651-5_6
https://doi.org/10.1007/978-3-642-40651-5_6
http://www.cloud4soa.eu/
http://www.cloud4soa.eu/
http://www.beacon-project.eu/
https://doi.org/10.1007/978-3-319-33313-7_26
https://doi.org/10.1007/978-3-319-33313-7_26
https://www.atmosphere-eubrazil.eu/
https://www.atmosphere-eubrazil.eu/
https://doi.org/10.5220/0007877406010608
https://doi.org/10.1016/j.future.2010.02.013
https://doi.org/10.1016/j.future.2010.02.013
https://doi.org/10.1016/j.future.2011.05.022
https://doi.org/10.5220/0006183400890106
https://doi.org/10.5220/0006183400890106
http://ascetic-project.eu/
http://ascetic-project.eu/
http://www.harness-project.eu/
http://www.harness-project.eu/
https://doi.org/10.1007/978-3-319-05960-0_36
https://doi.org/10.1007/978-3-319-05960-0_36
https://doi.org/10.1007/s00607-014-0421-x
http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/sca
https://doi.org/10.1109/BigData.2014.7004481
https://doi.org/10.1109/BigData.2014.7004481
http://www.celarcloudproject.eu/
http://www.celarcloudproject.eu/
https://doi.org/10.1145/3068126.3068130
https://cloudlightning.eu/
https://cloudlightning.eu/

	Abstract
	Keywords

	Introduction
	Research methodology
	Related surveys
	Cloud interoperability
	Cloud brokerage
	Interconnected clouds
	Cloud resource orchestration

	Analysis framework
	Cloud features
	Multi-cloud support
	Cross-cloud support
	Interoperability approach
	Integration
	Access

	Application features
	Application domain
	Portability
	Containerisation
	Resource selection
	Lifecycle control
	Wiring & workflow
	Monitoring
	Runtime adaptation

	Review of cROFs
	Production/commercial cROFs
	Heat
	Cloudify
	Brooklyn
	Stratos
	Alien4Cloud
	Terraform
	CloudFormation

	Experimental/academic cROFs
	Cloudiator
	Roboconf
	INDIGO-DataCloud
	MiCADO
	MODAClouds
	SeaClouds
	Other initiatives

	Critical discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

