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Abstract

The video request service of users in 5G network will explode, and adaptive bit rate technology can provide users
with reliable video response. Placing video resources on edge servers close to users can overcome the problem of
excessive network load similar to traditional centralized cloud platform solutions. Moreover, multiple edge servers
can provide caching and transcoding support by collaboration mechanisms, which further improves users’ Quality
of Experience (QoE). However, the design difficulty of video caching and content distribution strategies is increased
due to the diversity of collaboration mechanisms and the competition between local and collaborative services of
edge servers for computing and storage resources. In order to solve this problem, video cache and content
distribution problem is modeled as random integer programming problem in the multi-edge server at most two-
hop collaboration scenario. In order to improve the security of video data transmission, the video stream is
encrypted using an encryption algorithm based on Logistic chaotic-Quantum-dot Cellular Automata (QCA). For
improving the efficiency of solving integer programming problems, this paper uses a pyramid intelligent evolution
algorithm based on optimal cooperation strategy to solve this problem. Simulation experiments show that our
proposed method can obtain higher QoE value compared with several newer methods. In addition, the average
access delay of proposed method is shortened by more than 27.98%, which verifies its reliability.

Keywords: Multi-edge collaborative computing, Video data security, Video content distribution, Pyramid structure,
Quality of experience, Swarm intelligence evolution algorithm, Random integer programming

Introduction
In 5G networks, video services will become the main-
stream, and the contradiction between explosive growth
of data volume and QoE is becoming increasingly prom-
inent [1]. In other words, in a 5G network, when users
initiate a request for a certain bit-rate video resource, re-
mote storage devices must respond to users by codec
operations within the shortest possible time [2]. There-
fore, research on QoE-aware video caching and content

distribution technology has attracted extensive atten-
tions from academia and industry.
Due to differences in user own hardware processing

capabilities, network channel conditions, etc., different
users usually request video files of different quality from
remote video storage devices [3]. According to behav-
ioral characteristics of users, Adaptive Bit Rate (ABR)
technology is widely used in video services to improve
QoE of users [4, 5].
There are obvious differences in user own hardware

processing capabilities and network channel conditions,
the energy carried by user terminals such as mobile
phones and tablet computers is often limited. Therefore,
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it is generally not used to superimpose and decode mul-
tiple coding layers on the user side to obtain the bit rate
video required by users, such as Scalable Video Coding
(SVC) technology [6]. Conversely, for same video files,
the more common implementation of ABR is that the
remote end is first encoded as a video version with dif-
ferent formats and resolutions. Then, according to users’
request and network conditions, a variant file is select-
ively send to users [7, 8]. This method uses “storage/
compute-transmit” mode, and its advantage is that the
decoding overhead of mobile terminals is avoided,
thereby saving corresponding energy consumption.
However, the corresponding disadvantage is that when
the number of users is very large and video request op-
erations are frequent, the video traffic in network will
show an explosive growth. This will cause the transform-
ation time of video files to be too long and QoE to drop.
Further, the available technical routes can be divided into

centralized cloud computing solutions and decentralized
edge collaborative computing solutions in the ABR technol-
ogy adopting “storage/computing-transmission” mode. In
centralized cloud computing solutions, video storage and
codec operations are all implemented on the remote cloud
platform. Users need to obtain corresponding video re-
sources from the far ends [9, 10]. In decentralized edge col-
laborative computing solutions, video files with different bit
rates and formats are stored on edge computing devices
closer to users. In addition, different edge computing de-
vices can implement ABR functions by cooperative codec
and resource interaction [11, 12]. Compared with central-
ized cloud computing solutions, decentralized edge com-
puting solutions can effectively reduce video traffic
overhead in the network. Since edge computing devices are
closer to the user side, the QoE of users is correspondingly
higher [13]. However, it should be pointed out that the
computing resources and storage resources of edge com-
puting devices are often limited. A single edge computing
device cannot satisfy the explosive growth of video requests
in 5G networks [14]. However, the optional response
methods of edge computing devices are very diverse when
faced with the same video request. For example, local nodes
cache and directly transmit, neighbor nodes cache and
transmit, neighbor nodes decode and then cache and trans-
mit, and neighbor nodes cache and decode and transmits,
which undoubtedly increases the difficulty of designing
video caching and content distribution mechanisms. This
paper mainly design a video cache and content distribution
optimization strategy that is QoE-aware in a multi-edge
collaborative computing environment.

Related works
Considering the hardware resources and energy con-
sumption requirements of user terminals, traditional
SVC coding technology [6] is the representative, and

passive ABR technology that requires users to perform
the decoding operation is no longer suitable for video
services in 5G networks. On the contrary, another kind
of resource caching and encoding/decoding operation
performed by remote resource storage devices has been
welcomed by academia and industry. The basic principle
is that, using the “storage/computing-transmission”
mode, remote resource storage devices adaptively pro-
vide video streams corresponding to the bit rate accord-
ing to user requests and network conditions [15, 16].
There are two main technical solutions available, namely
centralized cloud computing solutions and decentralized
edge collaborative computing solutions in the “storage/
computing-transmission” mode.
Centralized cloud computing solution: All video files are

stored on a remote cloud platform. Users obtain video re-
sources with a specific bit rate by wide area networks. Many
references discuss the design of video caching and content
distribution mechanisms under the cloud computing
framework. For example, under the framework of central-
ized cloud computing, physical cache and virtual cache
were designed to respond to video file storage and online
transcoding computing respectively in reference [17]. Refer-
ence [18] proposed a rate adaptation algorithm that uses
video characteristics to simultaneously change video encod-
ing and transmission rate, which improves the amount of
video resources that the network can tolerate. Reference
[19] modeled the cache management of video stream files
as a constrained optimization problem considering the ser-
ver storage resource constraints. Reference [20] verified an
online architecture capable of using Docker for real-time
video transcoding in a cloud environment based on Kuber-
netes. The random forest regressor used in this framework
provided the best overall performance in terms of transcod-
ing speed, resource CPU consumption and accuracy of the
number of transcoding tasks implemented, but the work ef-
ficiency of reinforcement learning is low. However, in the
centralized cloud computing mode, user video requests are
sent to users after caching and encoding/decoding opera-
tions on the cloud platform. Thus, in order to ensure users’
QoE, the cloud computing model has high requirements
on network bandwidth, hardware conditions of storage and
computing equipment, and has the disadvantage of high
construction and maintenance costs [21].
Decentralized edge computing solution: In this solu-

tion, video files with different bit rates and formats are
first stored on multiple edge computing devices close to
the user side. When a user requests a video service with
a certain bit rate and format, the edge computing device
implements video caching, codec, and transmission op-
erations in a cooperative manner [22, 23]. Compared
with the centralized cloud computing model, the net-
work backhaul time between edge computing devices
and users is shorter, and the hardware performance
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requirements are also lower. But it should be pointed
out that the implementation of ABR technology is di-
verse under edge computing schemes. For example, for
the same video file request, edge computing devices can
directly transmit by local caches, cache from the neigh-
bor nodes and then transmit, decode from the neighbor
nodes and then cache and then transmit, and cache from
the neighbor nodes and then decode and then transmit.
Similar work was shown in [24]. Summary, a video cache
and content distribution mechanism with good perform-
ance must be flexibly adjusted according to network
conditions, network topology, edge device working sta-
tus, etc. to obtain satisfactory QoE in a multi-edge col-
laborative computing environment [25].
The existing work has carried out preliminary research

on the video caching and content distribution mechanism
in multi-edge collaborative computing environment, and
has achieved some beneficial results. For example, refer-
ence [26] proposed an adaptive wireless video transcoding
framework in the emerging edge computing mode to
achieve more detailed video transcoding. However, this
solution inevitably increased the further occupation of
computing resources while tracking changes in traffic.
Reference [27] considered the collaboration between mul-
tiple edge servers. However, there was no cooperative
transcoding service between edge servers. In other words,
all video transcoding operations were performed on local
servers, which requires high server computing perform-
ance and storage capacity. Reference [28] considered the
collaborative caching and transcoding between edge
servers. However, this solution only considered single-hop
mode in which edge servers perform video caching and
transcoding between only two edge servers.
Based on the above analysis, this paper proposes a

multi-edge collaborative video caching and content dis-
tribution mechanism based on random integer program-
ming. The main innovations are as follows:

1) Considering that video caching and content distribution
can complete caching and transcoding operations on
different edge servers, a video caching and content
distribution mechanism including two-hop cooperation
of edge servers is proposed. Compared with the trad-
itional single-hop cooperation mode, it only considers
two edge servers and the considered caching and distri-
bution mechanism is more general;

2) Based on the stochastic optimization method, with
the user QoE as optimization goal, video cache and
content distribution problems are modeled as
random integer linear programming problems.
Among them, the video cache in edge devices fully
takes into account the popularity of videos, which
further improves the hit rate of video storage and
the corresponding QoE.

3) In order to improve the security of video data
transmission, the video stream is encrypted using
an encryption algorithm based on Logistic chaotic-
Quantum-dot Cellular Automata (QCA).

4) In order to improve the efficiency of solving integer
programming problems, a pyramid structure
intelligent evolution algorithm based on optimal
cooperation strategy is proposed to solve the problem.

System model
As shown in Fig. 1, let the number of edge servers be N.
It can be cached from the video resource library in re-
mote servers, and can also perform codec operations.
Two-way data exchange between high-speed links be-
tween edge servers. At the same time, it can also be dir-
ectly linked to remote servers by the backhaul link. The
cache and codec operations of edge servers are subject
to scheduling and control of the control center.

Video coding encryption technology
The rapid development of communication technology
provides users with diversified and differentiated video
requirements. At the same time, the importance of video
information transmission security to both video pro-
viders and users cannot be ignored. At present, the in-
dustry generally uses H.264/AVC encoding standard to
compress and transmit videos with low distortion. This
paper uses an encryption algorithm based on Logistic
chaotic-Quantum-dot Cellular Automata (QCA) [29] to
encrypt video coding.
The flow of Logistic chaotic-QCA key generation algo-

rithm is shown in Fig. 2. Among them, Quantum Cellu-
lar Neural Network (QCNN) matrix A is obtained by
QCA using Logistic chaotic system for h consecutive it-
erations. h is a multiple of 512, and Logistic chaotic sys-
tem is shown in formula (1).

Xhþ1 ¼ f Xnð Þ ¼ ΨXn 1 − Xnð Þ ð1Þ
where Ψ∈(0, 4), Xh + 1∈(0, 1), h = 1, 2, 3, …; Xn (n = 1, 2,
3, 4) is the QCA state vector, which satisfies

Ẋ1 ¼ − 2ω01

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

1

q
sinx2

Ẋ2 ¼ − ω02 X1 − X3ð Þ þ 2ω01
X1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

1

q cosX2

Ẋ3 ¼ − 2ω03

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

3

q
sinX4

Ẋ4 ¼ − ω04 X3 − X4ð Þ þ 2ω03
X3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

3

q cosX4

8>>>>>>>><
>>>>>>>>:

ð2Þ

where x1, x3 are the polarizability; x2, x4 are the quantum
phases; ω01, ω03 are the coefficients proportional to the
energy between points in each cell; ω02, ω04 are the
weighted effects of difference in the polarizability of ad-
jacent cells coefficient.
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Suppose the generated matrix A satisfies

A ¼
X11 X12 ⋯ X1 n − 1ð Þ X1n

X21 X22 ⋯ X2 n − 1ð Þ X2n

X31 X32 ⋯ X3 n − 1ð Þ X3n

X41 X42 ⋯ X4 n − 1ð Þ X4n

2
664

3
775 ð3Þ

Split matrix A into matrix B composed of the first 3
rows of elements and matrix C composed of the last row
of elements, that is

B ¼
X11 X12 ⋯ X1 n − 1ð Þ X1n

X21 X22 ⋯ X2 n − 1ð Þ X2n

X31 X32 ⋯ X3 n − 1ð Þ X3n

2
4

3
5 ð4Þ

Fig. 2 Logistic-QCA encryption process

Fig. 1 Video caching and content distribution model in a multi-edge collaborative computing environment
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C ¼ X41 X42 ⋯ X4 n − 1ð Þ X4n
� � ð5Þ

The matrix B is further processed and converted into
a row vector to form a key sequence, denoted as S, as
shown in the following formula

S ¼ S1; S2;…; S3�nf g
¼ X11;X12;…;X21;X22;…;X3 n − 1ð Þ;X3n
� � ð6Þ

The elements in S are in order, and each 512 forms a
group to form a chaotic sequence pool H, as shown in
Eq. (7).

H ¼ h1; h2;…; hLf g ð7Þ
h1 ¼ S1; S2; :::; S512f g
h2 ¼ S513; S514; :::; S1024f g

⋮
hL ¼ S L − 1ð Þ�512þ1; S L − 1ð Þ�512þ2; :::; SL�512

� �
8>><
>>: ð8Þ

where L is an integer between (0, 3n/512].
For the elements in sequence C, the index sequence

Index is generated according to formula (9):

Index ¼ map min max C; 0; 1ð Þ ð9Þ
where map min max(C, 0, 1) means to map the value in
sequence C to interval [0, 1].
Index(i) and Index(j) are selected from matrix Index as

the initial values and Index_Log1 and Index_Log2 are
generated by perform Logistic transformation. And
further we round up according to formula (10) to
map to the integers IndexC_Log1 and IndexC_Log2 in
interval [1, L].

IndexC Log1 ¼ Index Log1� Ld e
IndexC Log2 ¼ Index Log2� Ld e

�
ð10Þ

Finally, the key generation is selected from key se-
quence S according to IndexC_Log1 and IndexC_Log2,
and the key is obtained by comparing bit by bit accord-
ing to formula (11), until a 512-bit complete key is
obtained.

Key ¼ SIndex Log1≥ SIndex Log2?1 : 0
� 	 ð11Þ

The original video is encoded with H.264/AVC and
contains two types of compressed video data and re-
sidual data [30]. In order to improve the reliability of
video transmission, this paper uses different keys to en-
crypt these two types of data. That is, for the com-
pressed video data, the first 256 bits of the Key are used
for encryption. For residual data, the last 256 bits of the
Key are used for encryption.

Multi-rate video cache model
Let collection V = {1, 2,…, s,…, S} be the video collection.
Each video can be encoded into M different versions of

files. The definition set vs = {vsm|m = 1, 2,…,M} is repre-
sented as a variant set of the s video file. For video files,
we can use bit rate and playback duration to
characterize. In addition, note that for the same video,
the playback duration of different variant files is the
same. Therefore, video file vsm can be described by the
following binary vector, namely

vsm : rsm; lsð Þ ð12Þ
where rsm and ls are the bit rate and playing time of vsm
respectively.
Without loss of generality, let each variant file in vs be

stored in ascending order of bit rate, that is, rs1 < rs2 <
… < rsM. Besides, low bit rate files can be transcoded
from high bit rate files. Let each edge server have a
cache user of size C to store a copy of the video, and C
is greater than the size of the video corresponding to
maximum bit rate, i.e.

C ¼ αrsM ð13Þ
where α is a coefficient greater than 1.
Based on the above analysis, first it assume that the

cache capacity of each edge server is limited. However,
video files of any bit rate can be cached to meet the video
requests of different users. However, it should be noted
that although videos generally have multiple versions with
different bit rates. However, considering user QoE and its
own network conditions, the current mainstream com-
mercial streaming media system usually adaptively adjusts
the transmitted video files to a level that matches the
current network conditions. Thus, as shown in Fig. 3, the
video caching strategy in this paper is:
When a user k(=1, 2,…, K) requests video vs, if no edge

server within k single-hop communication range caches
a video copy of any bit rate of video vs, then k will dir-
ectly use the lowest bit rate that the current network can
afford. The remote server directly caches video vs. Con-
versely, user k will cache the highest bit rate version
cached by edge servers within the single-hop communi-
cation range.

Video distribution strategy design
Under the edge server collaborative computing frame-
work, user video requests can be obtained from a remote
server or an edge server directly connected to users by a
single-hop connection, and can also be obtained by
other edge server transcoding operations. Figure 4 shows
all possible distribution methods when a user requests a
360p version of a video file.
Combining with Fig. 4, the following 8 binary variables

are introduced to characterize the feasible video distri-
bution scheme in multi-edge collaborative computing
environment:
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1) asmn ðtÞ ¼ 1 means that users directly obtain video
vsm from the cache area of edge servers connected
to it with a single hop (may be set to n, the same
below); if not, asmn ðtÞ ¼ 0, as shown in Fig. 4(a);

2) bsmn ðtÞ ¼ 1 means that video vsm requested by users
is obtained by transcoding operation of the high-bit rate
version by edge server n connected to it with a single
hop; if not, then bsmn ðtÞ ¼ 0, as shown in Fig. 4(b);

3) csm
nn0 ðtÞ ¼ 1 means that video vsm requested by users
is directly obtained from edge server n′(n ≠ n′); if
not, then csm

nn0 ðtÞ ¼ 0, as shown in Fig. 4(c);

4) dsm
nn0 ðtÞ ¼ 1 means that video vsm requested by users

is obtained by transcoding from the higher version
in edge server n′(n ≠ n′); if not, then dsm

nn0 ðtÞ ¼ 0, as
shown in Fig. 4(d);

5) esmm
0

nn0 ðtÞ ¼ 1 indicates that video vsm requested by
users is first obtained by edge server n from edge
server n′(n ≠ n′), and then obtained after
performing a forwarding operation locally; if not,

esmm
0

nn0 ðtÞ ¼ 0, as shown in Fig. 4(e);

6) f smnn0 ðtÞ ¼ 1 indicates that video vsm requested by
users is first obtained by edge server n′(n ≠ n′) from
edge server n with a high bit rate version. Then edge
server n′(n ≠ n′) performs the forwarding operation
and returns it to edge server n; if not, f smnn0 ðtÞ ¼ 0, as
shown in Fig. 4(f). It should be noted that there is a
working mechanism of the two-hop cooperation of
edge servers in this distribution mode;

7) gsmm
0

nn0n″ðtÞ ¼ 1 indicates that video vsm requested by
users is first obtained by edge server n″ from edge
server n′ and then transcoded to edge server n; if

not, then gsmm
0

nn0n″ðtÞ ¼ 1, as shown in Fig. 4(g). It

should be noted that in this distribution mode,

there is also a working mechanism of the two-hop
cooperation of edge servers;

8) hsm(t) = 1 means that video vsm requested by users
is obtained from a remote server; if not, hsm(t) = 0 is
shown in Fig. 4(h).

Problem modeling
Problem objective and QoE function
The problem of video caching and content distribution
is modeled as a constrained optimization problem.
First, define the following cache strategy set:

X ¼ V � R� N ¼ v; r; nð Þ : v∈V ; q∈Q; n∈Nf g ð14Þ

The above set indicates that r bit rate version of video
v is cached in edge server n. According to the adaptive
bit rate caching strategy designed in section 2.1, the bit
rate selected by user k can be expressed as

rk;v ¼ r argmaxr∈R ∃n∈N ; v;q;nð Þ∈Xf g½ �1þ ð15Þ

where [x]1+ = x is only if x ≥ 1, otherwise [x]1+ = 1.
Further, the delay in distributing video content is dis-

cussed. Let τn0 and τnn0 be the unit delay when edge ser-
ver n obtains video from remote servers and edge server
n′ respectively. Generally, τn0≫τnn0 . It should be noted
that because of the limited network bandwidth between
edge servers, the network topology between τnn0 and
edge servers is highly correlated. Let τT be the delay of
video forwarding operations. The delays under different
distribution strategies are given below.

1) For the distribution mode shown in Fig. 4(a), the
content access delay is τn1 ¼ 0, that is, it can be
directly transmitted to users without buffering from
other servers;

Fig. 3 Multi-rate video cache model
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2) For the distribution mode shown in Fig. 4(b), the
content access delay is

τn2 ¼ τTb
sm
n tð Þ ð16Þ

3) For the distribution mode shown in Fig. 4(c), the
content access delay is

τn3 ¼
X

n≠n0
rsmlsτnn0 c

sm
nn0 tð Þ ð17Þ

4) For the distribution mode shown in Fig. 4(d), the
content access delay is

τn4 ¼
X

n≠n0
rsmlsτnn0 þ τT
� 	

dsm
nn0 tð Þ ð18Þ

Fig. 4 All possible multi-edge collaborative computing video caching and distribution models
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5) For the distribution mode shown in Fig. 4(e), the
content access delay is

τn5 ¼
X

n≠n0

Xm − 1

m0 ¼1
rsm0 lsτnn0 þ τT
� 	

esmm
0

nn0 tð Þ ð19Þ

where m′ >m (the same below);

6) For the distribution mode shown in Fig. 4(f), the
content access delay is

τn6 ¼
X

n≠n0

Xm − 1

m0 ¼1
rsmlsτnn0 þ rsm0 lsτnn0 þ τT
� 	

f smnn0 tð Þ
ð20Þ

7) For the distribution mode shown in Fig. 4(g), the
content access delay is

τn7 ¼
X

n≠n0
X

n″≠n0≠n

Xm − 1

m0¼1
rsmlsτnn″ þ rsm0 lsτn″n0 þ τT
� 	

gsmm
0

nn0n″ tð Þ
ð21Þ

8) For the distribution mode shown in Fig. 4(h), the
content access delay is

τn8 ¼ rsmlsτn0h
sm tð Þ ð22Þ

Therefore, for a certain bit rate video, the content ac-
cess delay is

τnΣ ¼
X8
i¼1

τni ð23Þ

Moreover, since the video popularity follows Zipf dis-
tribution [31], that is, the video service requested by
users often has a positive correlation with popularity.
Therefore, edge servers often choose more popular vid-
eos for caching in order to shorten the time delay when
acquiring from remote servers. Thus, the following QoE
function is defined in this paper

Jn ¼ τnΣ
� 	γs ð24Þ

where γs is the popularity of video vs.

Constraints
Considering the existence of “cache before transmis-
sion”, “transcoding high bit rate version to low bit rate
version” principles of videos, the limited computing and
storage resources and the uniqueness of distribution
strategies, video cache and content distribution con-
straints in the actual process can be divided into the fol-
lowing five categories.

1) Execution order constraints

All video requests from any user first need to verify
whether the video file is cached on edge servers. Thus,
the binary decision variable δsmn ¼ 1 defined as follows
indicates that there are m bit rate copies of s video files
on edge server n, otherwise it is 0. Therefore, there is

asmn tð Þ≤δsmn ð25Þ
csmnn0 tð Þ≤δsmn0 ð26Þ

esmm
0

nn0 tð Þ≤δsm
0

n0 ð27Þ

f smm
0

nn0 tð Þ≤δsm
0

n ð28Þ

gsmm
0

nn0n″ tð Þ≤δsm
0

n0 ð29Þ

2) Transcoding order constraints

For distribution modes 2 and 4 involving transcoding
operations, there is a unidirectional operation for trans-
coding from a high bit rate version to a low bit rate ver-
sion. So there is

bsmn tð Þ≤ min 1;
Xm − 1

m0 ¼1
δsm

0

n

n o
ð30Þ

dsm
nn0 tð Þ≤ min 1;

Xm − 1

m0 ¼1
δsm

0

n0

n o
ð31Þ

3) Edge server storage capacity constraints

For edge server n, the size of video files it stores will
not exceed its storage limit, that isX

n∈N

X
m∈M

δsmn rsmls≤Cn ð32Þ

where Cn is the storage capacity of edge server n.

4) Edge server computing capacity constraints.

Under the multi-edge server collaboration framework,
it is considered that each edge server not only needs to
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process the video transcoding operations of users
connected to its single hop, but also assists other
edge servers in transcoding operations. And all video
transcoding operations should not exceed the max-
imum capacity they can handle. Let the number of
requests for video vsm from edge server n be Nsm

n ðtÞ .
βn is the unit bit transcoding time of edge server n,
and Tmax

n is the maximum computing delay of edge
server n. So there are:

βn

X
n∈N

X
m∈M

Nsm
n tð Þbsmn tð Þ þ

X
n0≠n

Xm − 1

m0¼1
esmm

0

nn0 tð Þ

þ
X

n0≠n

X
n∈N

X
m∈M

Ns
0
m

n0 tð Þdsm
nn0 tð Þ þ

Xm − 1

m0¼1

 
f smm

0

nn0 tð Þ

þ
X

n″≠n0≠n
gsmm

0

nn0n″ÞÞ≤Tmax
n

0
BBBBB@

ð33Þ

5) Unique constraint of distribution strategy

When any user’s video request arrives, the control
center can only give a distribution strategy to respond to
the user’s request, namely

asmn tð Þ þ bsmn tð Þ þ
X
n0≠n

csmnn0 tð Þ þ dsm
nn0 tð ÞþXm − 1

m0¼1
esmm0
nn0 tð Þ þ f smm0

nn0 tð Þ þ
X

n″≠n0≠n
gsmm0
nn0n00


 � !

þhsm tð Þ ¼ 1

ð34Þ

Thus, the multi-edge collaborative computing video
caching and content distribution strategy mentioned in
this paper can be modeled as the following integer
optimization model with constraints:

Objectiveð Þ : min Jn
Constraints : formula 25ð Þ − 34ð Þ

Optimization problem solving
Problem analysis
Integer optimization is an NP-hard problem [32], and
so far no effective general method has appeared.
Often, heuristic search algorithms [33, 34] and branch
and bound methods [35] are needed to approximate
the global optimal solution. Besides, the model built
in Section 3.3 is more accurately called a random in-
teger optimization problem. This is because the exact
number of user video requests, Nsm

n ðtÞ, cannot be ob-
tained in advance. However, on a longer time scale,
the number Nsm

n ðtÞ of user requests exhibits a self-
similar characteristic. Therefore, this paper proposes
the following strategies:

1) First, the number fNsm
n ðtÞgðm ¼ 1; 2;…;mÞ of

historical user requests constitutes a set, and each
element Nsm

n ðtÞ in the set satisfies:

min Nsm
n tð Þ≤Nsm

n tð Þ≤ max Nsm
n tð Þ ð35Þ

Changes in the number of video requests from a small
range of users will not have a significant impact on QoE
of all users. Thus, without loss of generality, the number
of running scenarios of edge servers can be set as:

Numn ¼ max Nsm
n tð Þ − min Nsm

n tð Þ
λn

� 

ð36Þ

where ⌈⌉ is rounded up and λn is the division interval.
Therefore, the running scene can be numbered 1, 2, …,
Numn according to the number Nsm

n ðtÞ of user video re-
quests in ascending order. Therefore, for N edge servers,

the number of possible running scenarios is
Y
n∈N

Numn .

It should be pointed out that the division operation can
effectively reduce the number of running scenarios,
thereby reducing the difficulty of solving optimization
model.

2) For each running scenario, Nsm
n ðtÞ is taken as the

upper bound of current interval. Therefore, the
random integer optimization model in Section 3.3
degenerates into the classic integer programming
model. However, considering that there are too
many decision variables involved in this problem
and there is a competitive relationship (such as the
consumption of computing resources by local
decoding and collaborative decoding), it may take
too long to solve using classic solvers such as
CPLEX. Thus, this paper further adopts pyramid
evolution intelligent evolution algorithm based on
optimal cooperation to solve this problem.

According to the above two steps, the best video cach-
ing and content distribution strategy in different scenar-
ios can be formed and stored in the control center in an
offline form. In actual application, the best caching and
distribution strategy can be selected in the form of table
look-up only by the number of current user video re-
quests. It should be pointed out that the advantage of
this scheme is that it avoids extra calculation time over-
head introduced when solving the online optimal strat-
egy. The problem complexity of table lookup method is
O(n), and it still has high computational efficiency even
when the number of running scenarios is large.
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Pyramid group intelligent evolutionary solution algorithm
based on optimal cooperation
The block diagram of group intelligent evolutionary so-
lution algorithm based on pyramid structure is shown in
Fig. 5. The global optimal solution is mainly composed
of the following formulas:

F
0
; I

h i
¼ sort Fð Þ ð37Þ

X ¼ X4;X3;X2;X1½ � ð38ÞX4

p¼1
length Xp

� 	 ¼ length Xð Þ ð39Þ

length Xp
� 	

< length Xpþ1
� 	

; i ¼ 1; 2; 3 ð40Þ

xqþ1
p ¼ xqp þ Rq

p � σ ð41Þ

Rq
p≤R

q
pþ1; P ¼ 1; 2; 3 ð42Þ

Rqþ1
p ¼ R0

p � μq ð43Þ

x ¼ xqþ1
p þ θ xqþ1

p − xqp

 �

ð44Þ

Equation (26) sorts in ascending order according to
the size of fitness value F of population X to obtain the
sorted fitness value F′ and index I. The sorted group X1

is divided into four parts according to formula (38) and
formula (39). The number of individuals in each part
satisfies Eq. (40), that is, the number of groups X1 com-
posed of excellent individuals is the smallest, and the
number of groups X4 composed of the worst individuals
is the largest. Group X1 is called mining layer, X2 and X3

are called transfer layers, and X4 is called exploration
layer. The individual xqp of each layer updates the group

according to different search neighborhoods Rq
p accord-

ing to Eq. (41) in each layer. The neighborhood size of
each layer satisfies formula (42), that is, the mining layer
generates a search step according to random number σ
between [− 1,1] in the smaller neighborhood. The point

is to complete the mining work of population, and the
exploration layer is to mine potential outstanding indi-
viduals in a large neighborhood. As the number of itera-
tions q progresses, the population of each generation
gradually approaches the global optimal solution. There-
fore, the search radius Rq

p of each layer is also adaptively

updated with contraction factor 0 < μ < 1 according to
Eq. (43), thereby improving the optimization efficiency.
After generating new individuals in each layer, the algo-
rithm collaborates between layers, that is, the excellent
individuals in exploration layer and the excellent individ-
uals in transfer layer are transferred to mining layer and
exploration layer respectively. The transferred individ-
uals are cultivated in receiving layer, and these individ-
uals are accelerated according to formula (44) with the
acceleration step θ along the direction for generation of
new individuals to obtain accelerated individual x.
The standard PES algorithm includes two kinds of col-

laboration, one is layer-to-layer group collaboration,
which strengthens the communication between popula-
tions. One is the collaboration between individuals in
the layer and parent individuals. Although parent indi-
viduals have a certain role in guiding the generation of
new individuals in the offspring, it is not very helpful in
producing excellent individuals. This will cause the con-
vergence speed of algorithm to be slow and affect the
operating efficiency of algorithm application. Particle
swarm algorithm completes the updating of population
by the individual extreme value and global extreme
value, which has the advantage of fast convergence speed
[36]. This update rule just makes up for the lack of co-
operation among individuals in pyramid structure intelli-
gent evolution algorithm. This paper integrates this idea
into the standard pyramid structure intelligent evolution
algorithm. By selecting the cooperation with the optimal
individual of population in the current generation layer
and optimal individual of the entire population to
complete the update for each layer of individuals. A
pyramid-based intelligent evolution algorithm based on

Fig. 5 Pyramid structure framework
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the optimal cooperation strategy is proposed, its update
rules for each layer of individuals are as follows:

xqþ1
p ¼ xqp þ rand � Rq

p

� w pBestqp − xqp

 �

þ 1 − wð Þ gBestq − xqp

 �h i

ð45Þ

where xqþ1
p is the new individual produced by the p layer

of the q generation, and xqp is the parent individual of

the p layer. rand refers to a random number between
[0,1], Rq

p is the search radius of current generation. pBes

tqp is the optimal individual of the p layer of the q gener-

ation, and gBestq is the optimal individual of entire
population for the q generation. 0 <w < 1 reflects the size
of the new individual’s bias toward individual’s pBestqp
direction, and 1 −w reflects the degree of bias toward
gBestq direction.
Based on the strategy of optimal cooperation, the par-

ent individual can be searched and explored along the
direction of joint force generated by the individual ex-
treme value and global extreme value. This not only
strengthens the mutual cooperation among individuals
in the layer, but also establishes the connection between
individuals in each layer and the globally optimal indi-
vidual. Under the strategy of layer-to-layer collaboration
and optimal cooperation among individuals, the conver-
gence speed of pyramid structure intelligent evolution
algorithm is accelerated, and the optimization efficiency
of this algorithm is improved.
Therefore, in this paper, the steps of applying pyramid

structure intelligent evolution algorithm to solve the op-
timal strategy for video caching and content distribution
are as follows.

Step 1: Initialize parameters, set the maximum number
of iterations Imax and population size G, and initial
search radius Rq

p of each layer;
Step 2: Randomly generate the initial population {x0} of
population size G and juxtapose the number of
iterations t = 1;
Step 3: Calculate the fitness value of population {xq}
(i.e. the current QoE function). According to the size of
fitness value J(xq), the population is divided into four
sub-populations Xq(q = 1, 2, 3, 4), and the contemporary
individual extremum pBestqp and global extremum pBes
tqp are recorded;

Step 4: According to Eq. (34), generate a new individual
xqþ1
p for individual xqp of the q(q = 1, 2, 3, 4) layer. And

select the corresponding number of individuals from
each layer to pass to the upper layer, and complete the
cultivation according to formula (34). Integrate the
generated new individuals, passing individuals and

parent individuals, and select individuals with the
corresponding number of populations as updated group
fxqþ1

p g of this layer.

Step 5: Integrate updated population fxqpg of each layer
into new population fxqþ1

p g generated by the q

generation.
Step 6: Determine the termination iteration condition.
When the number of iterations reaches the maximum
number of iterations t = Imax, then output gBestq and
algorithm stops. Otherwise, set t = t + 1 and update the
search radius Rq

p of each layer.

Experimental results and discussion
Experimental setup
On the hardware configuration of i5-3230M CPU, 10GB
RAM, 1TBHD + 512GB SSD, we use MATLAB R2016a
version and Opnet network simulation software to simu-
late and verify the performance of proposed algorithm.
The parameters used by Logistic chaotic-QCA encryp-
tion algorithm are: ω01 = ω03 = 0.28, ω02 = 0.7, ω04 = 0.5,
Ψ = 3.9. The video file type is 20, and the duration is
evenly distributed within 5min–45 min. Each video con-
tains 4 versions with bit rates of 1.25, 1, 0.75 and 0.5
times the original rate (2Mbps). Without loss of general-
ity, let the user arrival rate under each edge server follow
the Poisson distribution of 50/min, while the video
popularity follows Zipf distribution with parameters [0.3,
0.9]. And we suppose that each version of the same
video has the same request probability. Also set τn0 =
100ms, τnn0 is evenly distributed in [5, 50] ms interval,
the number of edge servers is 10. The unit bit transcod-
ing time βn reference value is uniformly set to 2 μs, and
the edge server cache capacity α reference value is set to
50. The maximum calculation delay Tmax

n allowed by
servers is set to 150ms.
In addition, comparison algorithms are selected as the

JCPNonCo scheme proposed in reference [18], the
CCNonP scheme proposed in reference [27] and the
APCP-OptRs scheme proposed in reference [28].

Parameter performance analysis
Transcoding capability of edge servers
The transcoding capability of edge server βn is closely
related to the CPU performance of edge server itself. In
other words, βn reflects the performance of edge servers
to a large extent. Besides, the smaller βn is, the higher
CPU performance is, and the stronger the transcoding
capability for videos is. Figure 6 shows the change rela-
tionship of QoE function when the unit transcoding
time βn changes from 0.5 μs in steps of 0.5 μs to 5 μs.
The overall change trend is that the value of QoE func-
tion gradually increases with the increase of βn. How-
ever, when βn changes from 0.5 μs to 3 μs, the QoE
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change range is relatively slow, after βn exceeds 3 μs, the
QoE function value rises sharply. The reason is that
when βn is smaller, the transcoding capability of each
server is stronger. Therefore, there are more options for
video caching and content distribution strategies. When
βn is large, due to the long processing delay of a single
server, it is no longer the optimal option to provide co-
ordinated transcoding capabilities to other edge servers.
Edge servers tend to cache videos at all bit rates to meet
users’ video experience. However, it should be noted that
lower transcoding time means higher performance re-
quirements of CPU, which will cause problems of rising
economic costs.

Cache capacity of edge server
Analyzing the impact of edge server cache capacity (that
is, α in Eq. (2)) on QoE performance, Fig. 7 shows the
change in the value of QoE function when α changes
from 10 to 50 and the step size is 5. When α changes
from 10 to 35, QoE gradually decreases as the value of α
changes. However, when the value of α exceeds 35, the

QoE performance no longer changes significantly. Fur-
ther define the storage hit ratio as the ratio of sum for
video types requested by users to the sum of video types
locally cached by edge servers. Figure 8 shows the rela-
tionship between the storage hit ratio and cache capacity
α. It can be seen that as the cache capacity of edge
servers gradually increases, the storage hit rate gradually
increases. When α exceeds 25, the storage hit rate in-
creases to 100% and does not change with the increase
of cache capacity. This is because when the cache cap-
acity of edge servers is large, more resource copies can
be stored on local edge servers. It no need to request re-
sources from the cloud or adjacent edge servers or rely
on other edge server nodes to assist in transcoding.
Thus, the numerical results show that increasing the
cache capacity of edge servers can only improve the QoE
of users to a limited extent, and at the same time will
bring about the problem of economic cost.

QoE comparison of different strategies
Set Zipf distribution parameter γs = 0.75. Figure 9 shows
the value of QoE under different algorithms when the
number of edge servers changes from 1 to 15.
As can be seen from Fig. 9, when the number of edge

servers is only 1, there is almost no difference in the
QoE values of all algorithms. This is because there is no
edge server collaboration mechanism at this time, and
all video caching and transcoding operations are per-
formed on the same server. With the increase in the
number of edge servers, the collaboration mechanism
among multiple edge servers is not considered in refer-
ence [18]. That is, each edge server only exchanges data
with a remote server and does not cooperate with other
edge servers, so QoE value is maintained at about 260.
References [27, 28] and the algorithm proposed in this
paper all have a cooperative relationship due to their ex-
istence. Therefore, the QoE value gradually decreases as

Fig. 7 Relationship between QoE function and edge server cache
capacity α Fig. 8 Relationship between storage hit rate and cache capacity α

Fig. 6 QoE function changes with the unit bit transcoding time βn
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the number of edge servers increases. However, com-
pared with the two-hop mode involving three edge
servers in this paper, the collaborative transcoding
service is not provided between edge servers in refer-
ence [27] and only edge servers in video cache is
considered in reference [28]. Single-hop mode with
transcoding only between two edge servers. Thus, the
proposed algorithm provides more feasible solutions
for caching and content distribution. Correspondingly,
the decrease of QoE value is improved by 22.84% and
14.40% compared with the algorithms proposed in
reference [27] and reference [28].
Suppose the number of edge servers is 10, and Fig. 10

shows QoE function value when the Zipf distribution
parameter γs changes. No loss of generality, the Zipf dis-
tribution parameter changes from 0.3 to 0.9 in steps of
0.1. Regardless of this method, QoE function shows a
similar trend. That is, as the distribution parameters
change, QoE function is decreasing. This shows that
caching popular videos on the edge server can

significantly improve users’ video request satisfaction.
However, when γs changing from 0.3 to 0.9, the algo-
rithm proposed in this paper has a decrease rate of
35.22%, 16.40% and 2.16% compared with references [18,
27, 28]. This is because this paper additionally considers
a two-hop collaboration scenario among three edge
servers when designing a video content distribution
strategy, thereby providing additional strategy options.

Comparison of average access delay of different
strategies
Further, the relevant algorithm performance test is con-
ducted in Opnet environment. Figure 11 shows the aver-
age access delay of users under each edge server under
different video caching and content distribution strat-
egies when edge server is 10.
It can be seen from Fig. 11 that the algorithm pro-

posed in reference [18] does not consider collaboration
between edge servers, so the average access delay of
users remains unchanged and is the largest of the four
methods. References [27, 28] and our proposed algo-
rithm all have a cooperative relationship, so the average
user access delay is shorter than the method described
in reference [18]. The proposed algorithm further con-
siders the video caching and transcoding operations in a
three-hop cooperative manner among three edge servers,
which is essentially the expansion and derivation of ref-
erences [27, 28]. This provides additional decision-
making options for control center, thereby making the
multi-edge server work in a more efficient state. There-
fore, the access delay of users is shortened by 45.21%,
24.66% and 14.06% respectively, compared with refer-
ences [18, 27, 28], and the average shortening is 27.98%.

Conclusion
This paper proposes a video caching and content distri-
bution mechanism in a multi-edge collaborative comput-
ing environment. Based on the definition of user QoE,

Fig. 10 QoE function changes with Zipf parameter Fig. 11 Average access delay of users

Fig. 9 QoE function changes with the number of edge servers
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the video caching and content distribution mechanism is
modeled as a random integer programming problem,
and is solved using an intelligent evolution algorithm
based on optimal cooperation pyramid structure. Experi-
mental examples show that our proposed algorithm en-
riches the decision-making options for video caching
and content distribution strategies due to considering
two-hop collaboration scenarios among three edge ser-
vices. Besides, it also guarantees that edge servers have
high computational efficiency and objective storage
space, so that it has a better engineering application in
practical background.
The established model is offline working mode, thus

we will further study the real-time online multi-edge ser-
ver collaboration video caching and content distribution
strategy in the future.
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