
Journal of Cloud Computing:
Advances, Systems and Applications

Nguyen et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:66
https://doi.org/10.1186/s13677-020-00211-9

RESEARCH Open Access

Flexible computation offloading in a
fuzzy-basedmobile edge orchestrator for IoT
applications
VanDung Nguyen, Tran Trong Khanh, Tri D. T. Nguyen, Choong Seon Hong and Eui-Nam Huh*

Abstract

In the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new
applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also
known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet
the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system
provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic
flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To
improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement
controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper,
we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve
the efficiency in computational resource management. Considering the network, computation resources, and task
requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile
user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task
ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to
improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a
fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in
augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our
proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.

Keywords: Internet of Things, Fuzzy logic, Mobile edge orchestrator, Offload decision

Introduction
Recently, fifth-generation (5G) cellular technologies have
enabled various new applications. such as video streaming
analysis, augmented reality (AR), the Internet of Things
(IoT), and autonomous driving [1]. These applications
have become significantly evolved and diverse. Key appli-
cations of the IoT are AR and virtual reality (VR), which
are among the most promising applications for smart-
phone users and autonomous vehicles [2]. Moreover, the

*Correspondence: johnhuh@khu.ac.kr
Department of Computer Science and Engineering, Kyung Hee University,
Korea, Deokyoungdaero, Yongin, Korea

era of the IoT implies a large number of sensors, actua-
tors, and mobile devices deployed at the network edge.
A considerable number of the computing tasks generated
by these devices require timely, context-aware processing,
and large amounts of computational resources, which cur-
rent mobile devices lack. As a result, processing massive
amounts of data traffic, and the growing demands for high
data rates and computational capabilities are key features
of the future Internet [3].
In order to enhance computation capabilities and

reduce computation latency, mobile cloud computing sys-
tems have been proposed to enable mobile devices to
utilize the powerful computing capability of the cloud

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00211-9&domain=pdf
mailto: johnhuh@khu.ac.kr
http://creativecommons.org/licenses/by/4.0/

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 2 of 18

[4–6]. Mobile users can access cloud computing over a
wide area network (WAN) to process elastic services and
conduct data-intensive analysis. However, in the IoT era,
cloud computing cannot satisfy the service demands from
the new trend of delay-sensitive applications. The reasons
are as follows. First, WAN latency is high [7]. Second,
the traffic capacity of a WAN will be significantly chal-
lenged by the dramatically increasing amount of data
generated by IoT devices [4]. Finally, cloud computing
works in a remote and centralized computing way; there-
fore, it cannot support context-aware computing for IoT
applications [8].
Mobile edge computing (MEC) addresses these chal-

lenges by bringing cloud servers closer to mobile devices
at the edge of mobile networks. Moreover, MEC standard-
ization was introduced by the European Telecommuni-
cations Standards Institute (ETSI) Industry Specification
Group, and is a key enabler for 5G [9]. MEC offers an
ultra–low latency environment with high bandwidth and
real-time access to radio and network analytics. There-
fore, MEC can provide latency-sensitive applications, and
can reduce traffic bottlenecks in the core and backhaul
networks while assisting in the offloading of heavy com-
putational tasks frommobile devices to the edge [10]. The
application task in MEC can move toward the edge and

locally process data in proximity to the users [10]. First,
mobile devices can access local computational resources
using a wireless local area network (WLAN). Second,
computation tasks of mobile devices can be processed
or filtered before sending them to the cloud. However,
the IoT environment opens up an innovation potential
for efficient resource management that is mandatory to
satisfy the quality requirements of different IoT applica-
tion types, such as how the edge system responds to the
dynamic flow of requests [11].
One such approach is known as the mobile edge orches-

trator (MEO) proposed by ETSI [9]. It is designed to
integrate end devices, edge servers, and the cloud to
form a hierarchical IoT architecture [3]. We depict this
system in Fig. 1. The MEO can manage the available
computing/storage/network resources and the life cycle
of the application [12]. The MEO decides the destination
computational unit for each offloaded task within edge
computing.
Two major actions in the MEO are monitoring the

rapidly changing network conditions and determining the
target VMs for offloading. Many approaches have been
proposed for solving the workload orchestration problem.
The decisions made can be based on various conditions,
such as a combination of network latency, data transfer

Fig. 1MEC and the role of edge orchestrator

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 3 of 18

size, and remote server capabilities [13]. Based on the
WLAN, themetropolitan area network (MAN), andWAN
communications, and the requirements of the application
task, the decision can bemade based on the edge/fog com-
puting infrastructure [14]. However, these approaches did
not study network congestion.
Fuzzy logic has recently become a good alternative to

controlling real-world imprecision of rapidly changing
uncertain systems, where it is difficult to provide accu-
rate mathematical models. Because the fuzzy logic–based
approach has lower computational complexity than other
decision-making algorithms, it is significant for solving
online and real-time problems. The decisions based on
fuzzy logic are made considering edge and cloud comput-
ing characteristics [15]. Considering parameter link delay
and the signal-to-noise ratio, the fuzzy-based offloading
ratio was calculated in [16]. On the other hand, by using
network information and matching it with the require-
ments received from applications, a fuzzy logic–based
orchestrator can execute processes so the target mobile
edge (ME) host can process applications [17]. In fuzzy-
based MEO, the input variables chosen have a significant
effect on system task execution. Additionally, the role of
a fuzzy-based MEO is to find a target server that can
be a local edge server, a neighboring edge server, or a
cloud server based on the profile of an incoming appli-
cation task and mobile edge computing characteristics.
However, this system did not study the packet success
ratio in the WLAN environment and the resource capa-
bility of a mobile device. Moreover, optimal mapping from
service requirements to resource allocation, flexible inter-
domain resource management for service delivery is open
issue [18].
In our study, we investigate the MEO system and the

WLAN environment. Therefore, we propose a new input
variable and decision for a fuzzy inference system. Based
on that, our proposal can find a target server for an incom-
ing application task: either a mobile device, a local edge
server, a neighboring edge server, or a cloud server. More-
over, the WLAN delay in our system also decreases. The
key contributions of this paper are as follows.

1 We propose a new fuzzy inference system in order to
decide where to offload the incoming task: its own
resources, a local edge server, or a remote server.

2 We study the impact of packet length in the WLAN
environment in terms of packet success ratio.
Consequently, the resource capability of a mobile
device is chosen based on the transmission time for
the application task.

3 Based on the available information on the network
connections and the states of the edge and the cloud,
the MEO allows the mobile device to dynamically
take the offloading decision: the edge or the cloud or

the device itself. Therefore, it can improve the
WLAN delay, service times, failed-task ratio, and VM
utilization.

4 Our proposal provides better performance when the
system is used for four applications under
consideration: augmented reality (AR), healthcare,
compute-intensive, and infotainment applications.

The remainder of this paper is organized as follows.
“Related works” section reviews the related works. “Flexi-
ble computation offloading in a fuzzy-based mobile edge
orchestration” section introduces the system model. “Per-
formance evaluation” section describes flexible computa-
tion offloading in fuzzy-based mobile edge orchestration.
“Conclusions” section provides the simulation results, fol-
lowed by a conclusion and future research.

Related works
The mobile edge orchestrator that is the central func-
tion in the MEC system maintains all information on
MEC, such as all the deployed ME hosts, the services and
resource availability in each host, the applications that are
instantiated, and the topology of the network [19]. The
MEO is basically used to manage and control the available
computing, storage, network resources, and the require-
ments of incoming application tasks, and it maintains a
catalogue of the applications that are available [9]. The
MEO uses the requirements received from the applica-
tion task for the decision on where to offload the process,
and the target ME host. The basic decision method is
that by matching the resource information with the appli-
cation requirements, the MEO can select the target ME
host [20]. To implement of MEO, Kristiani et al. [21] built
a set of an intelligent air-quality monitoring system in
Tunghai University. The authors use the Ganglia monitor-
ing system to collect relevant information such as CPU,
memory, network to monitor the power consumption
and make a measurement and evaluation for Kubernetes
Pods [21].
Considering MEO deployment, there are many

approaches to solving where to deploy an incoming
application task, as shown in Table 1. Baktir et al. [22]
proposed a server-centric method by using orchestra-
tion of software-defined networking (SDN) on the edge
server. In an edge computing system, Hegyi et al. [20]
optimized placing the components of IoT applications,
and Karagiannis et al. [23] proposed placement based
on the partitioned shortest path (PSP) method to solve
the placement optimization problem. In fog computing
infrastructures, Santoro et al. [24] proposed efficient and
optimized use of the infrastructure while satisfying the
application requirements, naming the approach Foggy.
On the other hand, Bittencourt et al. [14] proposed the
edge-ward placement algorithm, where modules of the

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 4 of 18

Table 1 Comparison of MEO systems used in difference environments

Method MEO deployment Key performance indicator

Baktir et al. [22] IP-addressed and load-balancing Edge server Capabilities of SDN

Bittencourt et al. [14] Edge-ward placement algorithm Edge/fog computing infrastructures CPU capacity and a static network delay for

WLAN, MAN, and WAN communication

Hegyi et al. [20] Optimize placing the components
of

Edge server Available virtualized resources

IoT applications

Karagiannis et al. [23] PSP method solving placement
optimization problem

Edge server The provisioning of resources,

replication degree of the applications

Santoro et al. [24] Foggy: efficient and optimized use
of the infrastructure

Fog computing infrastructures Traditional and non-traditional requirements

while satisfying the application
requirements

same application are grouped to be placed in the same
device. This algorithm was designed according to three
different policies: delay-sensitive versus delay-tolerant,
resource management, and allocation. The results in
this paper conclude that scheduling strategies can be
designed to cope with different incoming application
classes to take advantage of both fog and cloud computing
characteristics [14].
In the MEO, the offloading decision is made by taking

many parameters into consideration, as shown in Table 1.
As an example, the decision was made in [14] by the
edge-ward placement algorithm based on CPU capacity
and static network delay for WLAN, MAN, and WAN
communication. The PSP [23] approach is based on the
provisioning of resources and replication degree of the
applications.
On the other hand, the fuzzy logic approach used in

decision problems demonstrated that it can provide bet-
ter results than classic algorithms [15, 17, 25, 26]. In [15], a
fuzzy decision engine for code offloading considered both
mobile and cloud variables. The script input parameters
are CPU capacity, data length, video quality, and speed in
the fuzzy logic system. The script output is a local or a
remote processing decision. To determine a ratio for the
user, the script input parameters used are parameter link
delay and signal-to-noise ratio [25]. In [26], Rathore et al.
solved multi-criteria decision-making problems to select
an appropriate security service per mobile user require-
ments in fog and mobile edge computing by using a soft
hesitant fuzzy rough set.
In the MEO, fuzzy logic is suitable for addressing

technical challenges against rapidly changing uncertain
systems, such as CPU utilization on a virtual machine
(VM), which frequently changes depending on the tasks
running on it, or the bandwidth fluctuation that occurs
when the number of users increases. The reasons are

as follows. First, fuzzy logic can handle uncertainty in
predictable environments, because it is based on well-
understood principles and the use of imprecise infor-
mation provided in the form of human language. In
contrast, under rapid changes in the various workloads,
the existing decision-making algorithms based on multi-
constraint optimization with a mathematical model need
to know details about resource utilization by the server
and details on the network’s condition. Second, under the
offloading decision strategy in edge computing systems,
fuzzy logic–based approaches have lower computational
complexity than other decision-making algorithms [17].
Compared with other algorithms, fuzzy logic allows for
the consideration of multiple parameters in the same
framework. Therefore, it can easily handle a multi-criteria
decision-making process to decide where offloaded tasks
should run. To apply a fuzzy logic–based approach to
an MEO system, Sonmez et al. [17] captured the intu-
ition of a real-world administrator to get an automated
management system to solve online problems. The script
input parameters under consideration were WAN band-
width, the length of the incoming tasks, VM utilization
on the edge server, the delay sensitivity of the related
tasks, MAN delay, local edge VM utilization, and remote
edge VM utilization. The offloading decisions made con-
sisted of local, neighboring edge, and cloud servers. In
our work, we consider the WLAN environment, and
extend the offloading decision to adding a mobile device
server.

Flexible computation offloading in a fuzzy-based
mobile edge orchestration
Systemmodel
The MEO under consideration consists of a three-tier
hierarchical structure: mobile devices, both an edge server
and the edge orchestrator, and a global cloud server. It is

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 5 of 18

Fig. 2 Two-stage decision making marker

assumed that a task can be executed locally on a mobile
device. Moreover, the edge orchestrator application runs
on the edge servers in a distributed manner.
The role of the MEO is to determine the target compu-

tational unit for an incoming application task by matching
application task requirements and network information,
such as network bandwidth, and resource availability on
edge and cloud servers. By doing so, (1) the MEO will
receive the offloaded tasks from the mobile devices, and
(2) the target server will be decided upon by using a
two-stage decision-making marker [17]. In the first stage,
the MEO finds where to place the incoming applica-
tion task on the edge layer: the mobile device, an edge
server, or the nearest edge server. Then, it determines the
application deployment that should be executed on the
corresponding edge server or cloud server, as shown in
Fig. 2.
In this system, we assume that each incoming com-

putation task is independent and can be executed on
mobile devices, an edge server, or a cloud server. The
decision is made based on a fuzzy logic approach. In
order to obtain an efficient decision from the MEO,
some requirements and system parameter inputs should
be considered. The reasons are discussed as follows.
First, the MEC should have enough resource capacity
for successful offloading. Second, non-traditional require-
ments will affect the execution time for the incoming
task. Therefore, we consider WLAN delay, MAN delay,
local edge VM utilization, the candidate neighboring edge
(we call this the candidate edge), and VM utilization
for the application placement problem. In the second
stage, we consider WAN bandwidth, task length, aver-
age VM utilization, and the delay sensitivity of the task.
A profile of the application is created to provide the
task length, delay sensitivity of the task, and the WLAN
delay.

Packet success ratio versus packet length
Following [17], it is assumed that the mobile devices
generate tasks during active periods and wait to offload
the tasks in idle periods. In this section, we study the
packet length’s effect on the packet success ratio under
the simulationmodel in “Performance evaluation” section.
From the type of applications (refer to Table 2), the min-
imum upload/download data sizes is 20Kb. Therefore,
we perform the packet length’s effect on the packet suc-
cess ratio, in which packet length starts with 20Kb. To
measure the packet success ratio, one edge server, dif-
ferent packet length, and the number of mobile devices
are used. Figure 3 shows the packet success ratio versus
packet length. All mobile devices are assumed to have the
same packet length. Assuming a fixed transmission rate,
when the packet length increases, the packet success ratio
decreases. The reason is, the longer the packet length, the

Table 2 Application types used [17]

AR Healthcare Compute Info.

Usage
percentage (%)

30 20 20 30

Task interval (sec) 2 3 20 7

Delay sensitivity
(%)

0.9 0.7 0.1 0.3

Active/idle
period (sec)

40/20 45/90 60/120 30/45

Upload/download
data (Kb)

1500/25 20/1250 2500/200 25/1000

Task length (GI) 9 3 45 15

VM utilization on
Edge (%)

6 2 30 10

VM utilization on
Cloud (%)

0.6 0.2 3 1

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 6 of 18

Fig. 3 Packet success ratio versus packet length

Fig. 4 Packet success ratio versus number of mobile devices

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 7 of 18

Fig. 5 Fuzzy logic system for placement problem

longer the transmission time. For instance, the packet suc-
cess ratios are 75% and 70% for packet lengths of 80 and
100Kb, respectively.
Under different packet lengths, the packet success ratio

is shown in Fig. 4. When the number of mobile devices
increases, the packet success ratio also decreases. The rea-
son is that when the number of mobile devices accesses
the channel to transmit application tasks, the collision
probability increases [27]. On the other hand, in a MEC
system, a task can be executed locally on a mobile device.
Therefore, we eliminate the short packet length. It means
mobile devices that have a short packet length do not
attempt to access the channel to transmit these packets.
Compared with a non-filter scheme, the packet success
ratio using a filtered packet size is higher, as shown in
Fig. 4. As an example, when the number of mobile devices
is 300, the packet success ratios using filtered and non-
filtered packet lengths are 83.9% and 79.7%, respectively.
For upper observations, we conclude that under one

edge server and different packet lengths, the packet suc-
cess ratio decreases when the number of mobile devices
increases. Therefore, to design an efficient offloading
decision, WLAN is an important indicator that has to be
considered while offloading tasks to the edge server. For
example, if the network congestion is too high, offloading
to the edge server is not beneficial.

Fuzzy logic system for the placement problem
Fuzzy logic can handle uncertainty in predictable environ-
ments because it is based on well-understood principles
and the use of imprecise information provided in the
form of human language. In contrast, under rapid changes
in the various workloads, the existing decision-making
algorithms based on multi-constraint optimization with a
mathematical model need to know details about resource
utilization by the server and information on the net-
work’s condition. The components of a fuzzy logic system

Table 3 Definition of key mathematical notations

Symbol Definition

Low (L),Medium
(M), High (H)

Experience level using in the placement problem

Light (L), Normal
(M), Heavy (H)

Experience level using in the deployment problem

μL(w) Membership function,
μL(w) = {

w ∈ L,μL(w) ∈[0, 1] }

μM(w) Membership function,
μL(w) = {

w ∈ M,μM(w) ∈[0, 1] }

μH(w) Membership function,
μL(w) = {

w ∈ H,μH(w) ∈[0, 1] }

a WLAN delay

b MAN delay

c Local edge VM utilization

d Candidate edge VM utilization

x WAN bandwidth

y Length of the incoming application task

z VM utilization on the edge server

t Delay sensitivity of the related application

Ri Fuzzy rule at index ith

μ
Ri
i The minimum (min) function to determine how the

results of multiple rules are combined

within Ri . μ
Ri
i = min{μRi

a (m),μRi
b (n),μRi

c (l),μRi
d (k)}

{m, n, l, k} The measured experiment value, as crisp data, is the
input parameter to be fuzzified

μr The maximum (max) function to determine how the
results of multiple rules have the same decision r on
the Fuzzy rules

ω The center of gravity (COG) of the area under the
curve by using the centroid defuzzifier method

T Incoming task

O Target of offload

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 8 of 18

(FLS) for the placement problem consist mainly of four
parts: the fuzzifier, the rules, an inference engine, and
the centroid defuzzifier, as shown in Fig. 5. We explain
some key mathematical notations in Table 3. Follow-
ing [15, 17, 25, 26, 28], the operation of the FLS is as
follows.

1 Fuzzification is used to transform crisp input sets to
fuzzy sets. Note that a crisp set is converted to a
linguistic variable (LV) for each indicator. The LV is
decomposed into linguistic terms (LTs). We use a
membership function (MF) to quantify an LT.

2 Fuzzy input sets are introduced to the inference
engine used to evaluate and combine the fuzzy rules
from the fuzzy rule base in order to make the
inference.

3 The resulting fuzzy output, called a crisp output
value, is processed in the defuzzification step by
using a centroid defuzzifier method.

Crisp input variables: Fuzzy logic systems for the place-
ment problem operate on four crisp input variables,
given as

F1 = {a, b, c, d} (1)

where {a, b, c, d} are WLAN delay, MAN delay, local
edge VM utilization, and candidate edge VM utilization,
respectively.

Linguistic variables: For {a, b}, we use Low (L), Medium
(M), High (H) as the linguistic variables. For {c, d}, Light
(L), Normal (M), Heavy (H) represent the linguistic vari-
ables.
Membership function: In our model, we use the most

commonly used one: the triangular form representing
the membership function. The values used in member-
ship functions for {b, c, d} were tested in [17]. For the
value used in membership function a, we conducted var-
ious experiments to find the best value. The membership
functions of all crisp input variables are depicted in Fig. 6.
We associate a grade with each linguistic term, and the

crisp value is transformed into a fuzzy value in the fuzzi-
fication step by using these membership functions. They
are given as

Fi(x) = [
μL
i (w),μM

i (x),μH
i (x)

]
, wherei ∈ {a, b, c, d}

(2)

Fuzzy Rules:A fuzzy rule is defined as a simple IF-AND-
THEN rule with a condition and a conclusion [29]. To
determine the fuzzy rules, we vary the relatively better
fuzzy rule set that is found empirically, and the best rule
combination in the computational experiments is used
[17]. The number of fuzzy rules is n = 34 = 81 based
on four membership functions with three linguistic terms.
Table 4 shows example fuzzy rules found empirically for
the placement problem

Fig. 6Membership functions used in Fuzzy logic system for placement problem

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 9 of 18

Table 4 Example fuzzy rules found empirically for the placement
problem

Rule index a b c d Decision

R1 low low light high mobile device

R2 low high normal high mobile device

R3 high high normal low local edge

R4 medium medium heavy high local edge

R5 high high heavy high candidate edge

Aggregation: In the aggregation step, we use minimum
(min) and maximum (max) functions to determine how
the results ofmultiple rules are combinedwithin a rule set.
We calculate a fuzzy value for selecting the mobile device,
the local edge, and the candidate edge server as follows:

μmobile device = max
{
μR1
mobile device, ...,μ

Rn
mobile device

}

(3)

μlocal edge = max
{
μR1
local edge, ...,μ

Rn
local edge

}
(4)

μcandidate edge = max
{
μR3
candidate edge, ...,μ

Rn
candidate edge

}

(5)

where n is 81, and themin functions are based on a Fuzzy
Rules step. For example, in Table 4, the min functions are
given as

μR1
mobile device = min

{
μR1
a (m),μR1

b (n),μR1
c (l),μR1

d (k)
}

(6)

μR3
local edge = min

{
μR3
a (m),μR3

b (n),μR3
c (l),μR3

d (k)
}

(7)

μR5
candidate edge = min

{
μR5
a (m),μR5

b (n),μR5
c (l),μR5

d (k)
}

(8)

wherem, n, l, k are the crisp input parameters for the fuzzy
inference system.

Defuzzification: We use a centroid defuzzifier to calcu-
late the inference. According to [29], the centroid defuzzi-
fier method achieves the center of gravity (COG) of the
area under the curve, as shown in Fig. 7. It is calculated as

ω1 =
∫
x∈X xμi(x)∫
x∈X μi(x)

, (9)

where i is a mobile device, a local edge, or a candidate
edge server. After applying the centroid defuzzifier, a crisp
output value, ω1, is in the range [0, 100]. Based on ω1, we
define the offloading decision as follows.

decision =
⎧
⎨

⎩

Mobile device if ω1 < 8
Local edge server if 8 < ω1 < 50
Candidate edge server Otherwise.

(10)

Fuzzy logic system for the deployment problem
Similar to the fuzzy logic system for the placement prob-
lem, a fuzzy logic system for the deployment problem
operates with the same method, as follows.
Crisp input variables: A fuzzy logic system for the

deployment problem operates on four crisp input vari-
ables, given as

F2 = {x, y, z, t} (11)

where {x, y, z, t} areWAN bandwidth, length of the incom-
ing application task, VM utilization on the edge server,
and delay sensitivity of the related application, respec-
tively.
Linguistic variables: For {x, y, t}, we use low (L),medium

(M), High (H) as the linguistic variables. For {z}, light (L),
normal (M), heavy (H) represent the linguistic variables.
Membership function: We also use the triangular form

to represent a membership function. The membership
functions of all crisp input variables are depicted in Fig. 8.
Fuzzy Rules: A simple IF-AND-THEN rule with a con-

dition and a conclusion [29] is used in the fuzzy rules.
We have the number of fuzzy rules at 34 = 81 based
on four membership functions with three linguistic terms.

Fig. 7 The centroid for the defuzzification process

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 10 of 18

Fig. 8Membership functions used in Fuzzy logic system for deployment problem

Table 5 shows example fuzzy rules found empirically for
the deployment problem.
Aggregation: In the aggregation step, we also use mini-

mum and maximum functions.
Defuzzification:The centroid defuzzifiermethod is used

to calculate inference, as shown in Fig. 9. It is given as

ω2 =
∫
x∈X xμi(x)∫
x∈X μi(x)

, (12)

where i belongs to the set for edge processing and cloud
processing. Based on ω2„ we define the offloading deci-
sion as follows:

decision =
{
Edge processing if ω2 ≤ 50
Cloud processing Otherwise. (13)

As explained above, the proposed MEO can offload an
incoming task to four servers: a mobile device, a local

Table 5 Example fuzzy rules found empirically for the
deployment problem

Rule index x y z t Decision

R1 Low Low Light High Edge

R2 Low High Normal High Edge

R3 High High Normal Low Cloud

R4 Medium Medium Heavy High Cloud

R5 High High Heavy High Cloud

edge, and candidate neighboring edge and cloud servers.
We present the details in Algorithm 1.

Performance evaluation
According to [17, 30–33], the most presented edge com-
puting use cases are considered in our simulation scenario
to aim for real-world simulated models. First, an aug-
mented reality application on Google Glass is presented
in [31]. Second, the infotainment application is discussed
in [32]. Third, a healthcare application that uses a foot-
mounted inertial sensor to analyze the walking pattern
of the users is studied in [33]. For example, a unmanned
aerial vehicle-based smart healthcare system was pro-
posed for Coronavirus disease (COVID-19) monitoring
through wearable sensors, movement sensors deployed in
the targeted areas [34]. Finally, the example of compute-
intensive application is discussed as follows. In the electric
bus system, an IoT and cloud network provide updated
information for passengers and overall systemmonitoring
[35]. The main objects are to maximize passenger travel
during regular bus system implementation and without
particular or charter bus requirements, maximize the uti-
lization of buses during its journey, and maximize the
utilization of the pre-booked ticket system for better plan-
ning [35]. All applications are set up in EdgeCloudSim
simulator [30].
In our simulations, we assume that the mobile devices

offload tasks which belong to a predefined set of applica-
tion categories. The user wearing the smart glass offloads

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 11 of 18

Fig. 9 The centroid for the defuzzification process

Algorithm 1:Offloading decision scheme
input : Incoming task T
output: Target of offload O

1 Read network topology;
2 Read profile of incoming task T ;
3 Apply Fuzzy logic system for placement problem ←
“Fuzzy logic system for the placement
problem” section;

4 Calculate a crisp output value ω1 ← Equation 9;
5 if ω1 <= 8 then
6 if Required capacity < existing capacity then
7 O = Mobile device;
8 else
9 O = Local edge server;

10 end
11 else
12 if 8 < ω1 <= 50 then
13 O = Local edge server;
14 else
15 O = Candidate edge server;
16 end
17 end
18 Apply Fuzzy logic system for placement problem ←

“Fuzzy logic system for the deployment
problem” section;

19 Calculate a crisp output value ω2 ← Equation 12;
20 if ω2 <= 50 then
21 O = Edge processing;
22 else
23 O = Cloud processing;
24 end

captured pictures to the remote servers, which provide
face recognition service. The user with the foot-mounted
inertial sensor offloads sensor data to the remote servers
which provide a fall risk detection service. Similarly, info-
tainment and the compute-intensive applications send

their tasks to the remote servers, which provide related
services.
The simulation parameters are presented in Table 6.

According to [17], the maximum number of edge servers
that can use the network resources is reached because
of congestion is 25, which is used in our scenario. The
number of mobile users is deployed equally among the
edge servers. Each location is covered by a dedicated
wireless access point, including edge server, and mobile
devices. Moreover, to study all approaches’ performance
when the system is overloaded, we vary the number of
mobile devices from 200 to 2400. When they move to the
related location, they will join WLAN, and they based on
their offloading decision send tasks to the edge or cloud
server or local processing. Mathematical models compute
the WLAN andMAN delays. However, the results are not
correct in dynamic environments. To achieve a more real-
istic simulation environment, the empirical study results
for the WLAN and MAN delays are calculated by using
values in real-world simulated models. We assume that a
single server queue is modeled with Markov-modulated

Table 6 Simulation parameters [17]

Parameters Value

Simulation time/warm-up period 33 min / 3 min

Number of edge servers 25

WAN/WLAN bandwidth empirical

MAN bandwidth MMPP/M/1 model

LAN propagation delay 5 ms

Number of VMs per edge/cloud server 8/4

Number of cores per edge/cloud VM CPU 2/4 minutes

VM CPU speed per edge/cloud 10/100 GIPS

Mobility model Random way point

Propagation of selecting a location type Equal

Number of locations, Type 1/2/3 2/4/8

Mean dwell time in Type 1/2/3 2/5/8 ms

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 12 of 18

Poisson process (MMPP) arrivals [17]. When the system
congestion level is changed, the mean arrival rates of the
tasks are updated. Therefore, an empirical study is carried
out for characterizing the Internet connection capacity
to measure the WLAN/WAN bandwidth. There is not a
range of values used in simulations because the WLAN
and LAN bandwidths are computed by the average values
of the measurements taken at ten consecutive experi-
ments, which are discussed in EdgeCloudSim simulator
[17, 30].
In this paper, we consider the different incoming tasks

from four applications: augmented reality, healthcare,
compute-intensive, and infotainment applications. They
have different profiles in terms of task arrival distribu-
tion, delay tolerance, and task size, as shown in Table 2.

The inter-arrival time and task size are exponentially dis-
tributed random variables [17]. The usage percentage of
the application defines how the percentage of mobile
devices running this application. We define how fre-
quently the related task is sent to the edge orchestrator by
task inter-arrival time, and it follows an exponential dis-
tribution. We assume that mobile devices generate tasks
during the active period, and they just transmits in the
idle period. Data is sent to/received from the server with
the upload/download data rate. The delay sensitivity, task
length, and VMutilization are used to determine the fuzzy
inference system in “Fuzzy logic system for the placement
problem” section.
In this paper, we compare four benchmark schemes as

follows.

Fig. 10 Performance results of three Fuzzy logic approaches with a number of mobile devices is 2400

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 13 of 18

1 Fuzzy approach: The fuzzy-based approach [17]
considers both computational and communication
resources and makes a decision. The MEO finds a
target server: either a local edge server, a neighboring
edge server, or a cloud server.

2 Utilization approach: The CPU utilization–based
method will select a target edge server as long as it is
not congested in terms of CPU utilization.

3 Hybrid approach: The hybrid method considers both
WAN bandwidth and the CPU utilization of VMs in
the decision process. This method uses threshold
values to decide about offloading an incoming task to
an edge or cloud server in order to maximize cloud
offloading.

4 Competitor approach : This approach [15] utilizes
fuzzy logic to decide about executing tasks on the
mobile device or a cloud server.

We evaluated four performance metrics: average
WLAN delay, failed-task ratio, service time, and VM
utilization. For instance, performance results described
in detail for three fuzzy logic approaches used when a
number of mobile devices is 2400 as shown in Fig. 10.
Considering the average results based on all application
types, Fig. 11 shows the main performance criteria
Figure 11a depicts the average WLAN delay based on

all application types. The hybrid approach provides the
worst performance, because the application tasks will
be decided for offload to a cloud server after the CPU
resources in the edge server are congested. That means
many applications will be in the queue, waiting to be
processed on the edge server. This makes the probability
of a collision increase in the channel because the appli-
cation tasks have to be sent again and again until they
are successfully received by the edge node. The fuzzy

Fig. 11 Average WLAN delay, failed-task ratio, service time, and VM utilization based on all application types

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 14 of 18

approach considers the communication network, MAN
delay, and WAN bandwidth. It can balance both compu-
tational requirements and the communication network in
the task-offloading decision process. It eliminates tasks in
the queue for the local edge server by sending them to
neighboring edge servers. However, compared with our
proposal, we have a trade-off between WLAN delay, and
computational and communication edge cloud networks
in the decision process. Because a mobile device can exe-
cute a short task, the number of application tasks that
will be sent to a local edge node decreases. Therefore, our
proposal shows better results than its competitors.
Figure 11b shows the average number of unsuccessful

application tasks. These tasks consist of i) tasks dropped
by the network, and ii) tasks that fail if there are not
enough CPU resources on the VM for the incoming task.
The utilization and hybrid approaches decide to offload
to the cloud when the computational resources of a VM
on edge servers are congested. As a result, some tasks
will be dropped by the network due to WAN congestion.

Moreover, compared with our proposal, when it comes
to other approaches, one of the main reasons for provid-
ing poor performance isWLAN congestion. Our proposal
provides better results, because we consider the WLAN
delay when offloading tasks to an edge server.
The service time consists of network delay and process-

ing delay, as shown in Fig. 11c. As shown in Fig. 11a, our
proposal decreases theWLANdelay; therefore, it provides
the best performance. The fuzzy algorithm balances edge,
neighboring edge, and cloud servers. For a low number of
mobile devices (less than 1200), our proposal and the fuzzy
algorithms get approximate results, as shown in Fig. 11a.
Figure 11d shows the average CPU utilization by

VMs running on edge servers. This performance result
means that if edge servers have lower CPU utiliza-
tion, the related system is more efficient. As shown
in Fig. 11d, our proposal and the fuzzy algorithms use
the computational resources of VMs better than other
algorithms. On the other hand, utilization and hybrid
algorithms decide to offload to a cloud server after the

Fig. 12 Average WLAN delay based on each application type

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 15 of 18

computational resources of the VM are congested. The
competitor algorithm decides to offload to the edge server
when the CPU speed is high. Due to MAN communica-
tion failures, these systems could not be utilized well [14].
Our proposal can adapt to dynamic environments more
than fuzzy algorithms, because it considers not only MAN
delay but also WLAN delay. Moreover, a system using our
proposal can use the mobile device resources to execute
short application tasks. As a result, our proposal utilizes
the edge server more efficiently than the four algorithms.

AverageWLAN delay based on each application type
We separately analyzed WLAN delays for four appli-
cations: VR, augmented reality, healthcare, compute-
intensive, and infotainment applications, as shown in
Fig. 12. According to Table 2, the task lengths generated
are small, medium, big, and very big, for the health-
care, AR, infotainment, and compute-intensive applica-
tions, respectively. In our proposal, some short tasks for

healthcare applications and medium-length tasks in AR
are executed on the mobile device/edge server. There-
fore, the number of application tasks sent to an edge
node decreased. As a result, WLAN delays in healthcare
applications and AR applications gave the best results
compared to the competitors, as shown in Fig. 12a and b.
Big and very big tasks are sent to edge nodes. How-
ever, using our proposal, the system has many chances
for more transmissions of application tasks by elimi-
nating short-length tasks. Figure 12c and d show our
proposal outperformed its competitors in big and very
big tasks.

Average failed-task rates based on each application type
Figure 13 shows the average failed tasks based on each
application type. Note that failed tasks are defined as tasks
dropped because of network congestion and tasks that
fail because of too few CPU resources. When the sys-
tem is heavy, as when the number of mobile devices is

Fig. 13 Average number of failed tasks based on each application type

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 16 of 18

greater than 1600, the performance results between the
competitors are different. The failed tasks using the com-
petitor algorithm are caused by WLAN and MAN con-
gestion, because that algorithm prefers offloading to edge
servers. In systems using the utilization and hybrid algo-
rithms, the failed tasks are caused by not only WLAN and
MAN congestion but also WAN congestion, since they
offload to the cloud. Although the fuzzy algorithm bal-
ances the computational resources and communication
network characteristics, it is affected by WLAN conges-
tion. Consequently, by considering WLAN, MAN, and
WAN congestion and computational resources, our pro-
posal provides better results based on each application
type. On the other hand, small and medium tasks pre-
fer to go to local or neighboring edge servers. Then, the
failed tasks happen in the WLAN and MAN environ-
ments. Meanwhile, since the big and very big tasks are
sent to a cloud server, most of the failed tasks happened
in WAN communication. Therefore, the number of failed

small and medium tasks (Fig. 13a and b) is higher than for
big and very big tasks (Fig. 13c and d).

Average service time based on each application type
Figure 14 shows the average service time based on each
application type. According to Table 2, the healthcare
application has a higher responsiveness level than other
applications, and results in 2% CPU utilization on the cor-
responding edge VM. According to the results in Fig. 14a,
our proposal shows better results while serving time-
critical small tasks. The reason is that our proposal allows
mobile devices to execute a small task without sending
it to an edge node. Moreover, WLAN congestion hap-
pens when the number of mobile devices is high (e.g.,
greater than 1000 devices). As a result, the service time
of other algorithms is higher than our proposal. In the
AR application, our proposal can execute more tasks
than its competitors, as shown in Fig. 14b. The reason is
that AR applications using our proposal can be executed

Fig. 14 Average service time based on each application type

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 17 of 18

on mobile edge, local edge, neighboring edge, or cloud
servers. Task lengths that are big and very big result in
10% and 30% CPU utilization on the corresponding edge
VM, as shown in Table 2. Therefore, these application
tasks prefer offloading to cloud servers because the VMs
running on the cloud servers are very powerful. Since the
fuzzy algorithm and our proposal balance the computa-
tional resources and communication network characteris-
tics, these performance results are approximate and better
than other algorithms, as shown in Fig. 14c and d.

Conclusions
In this paper, we proposed flexible computation offloading
in fuzzy-based mobile edge orchestration for IoT applica-
tions, whichmanages the computing resources to increase
performance. Depending on the available information on
the network connections and the states of the edge and
the cloud, theMEO decides where to offload the incoming
client requests to increase the performance. In our system,
a fuzzy logic-based workload orchestrator is proposed to
provide the efficient offload decision: a mobile device, a
local edge, a neighboring edge, or a cloud server, and allo-
cates the edge resources. Our study’s main objective is
to solve the bottlenecks of the multi-tier edge comput-
ing architectures because of the essential factors: WLAN
delay, MAN delay, local and neighboring VM utilizations.
These crisp variables are used in fuzzy logic operations to
determine the decision for small and medium tasks exe-
cuted on the mobile user or local edge servers, or a neigh-
boring edge cloud. We set up a simulation environment
to evaluate our proposal’s performance by comparing it
with four benchmark solutions. According to the simula-
tion results, our proposal provides better results than its
competitors for augmented reality, healthcare, compute-
intensive, and infotainment applications. In future work,
we will apply a genetic algorithm for task scheduling to
improve the quality of service.
Acknowledgements
This work was supported by Institute for Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea
government(MSIT) (No.2017-0-00294, Service mobility support distributed
cloud technology)

Authors’ contributions
Methodology, VanDung Nguyen; Resources, VanDung Nguyen and Tran
Trong Khanh; Software, Tran Trong Khanh, VanDung Nguyen and Tri D.T.
Nguyen; Supervision, Eui-Nam Huh and Choong Seon Hong; Writing – original
draft, VanDung Nguyen; Writing – review & editing, Tran Trong Khanh and
VanDung Nguyen. The author(s) read and approved the final manuscript.

Authors’ information
Department of Computer Science and Engineering, Kyung Hee University,
1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Korea.
VanDung Nguyen (ngvandung85@khu.ac.kr), Tran Trong Khanh
(khanhtrannnn@khu.ac.kr), Tri D.T. Nguyen (tringuyendt@khu.ac.kr), Choong
Seon Hong (cshong@khu.ac.kr) and Eui-Nam Huh (johnhuh@khu.ac.kr).

Funding
This study was supported by the Korea government (No.2017-0-00294, Service
mobility support distributed cloud technology), Korea.

Availability of data andmaterials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 19 August 2020 Accepted: 4 November 2020

References
1. Nguyen V, Khanh TT, Tran NH, Huh E, Hong CS (2020) Joint offloading and

IEEE 802.11 p-based contention control in vehicular edge computing.
IEEE Wirel Commun Lett 9(7):1014–1018

2. Imagane K, Kanai K, Katto J, Tsuda T, Nakazato H (2018) Performance
evaluations of multimedia service function chaining in edge clouds. In:
2018 15th IEEE Annual Consumer Communications Networking
Conference (CCNC). pp 1–4

3. Ren J, Zhang D, He S, Zhang Y, Li T (2019) A survey on end-edge-cloud
orchestrated network computing paradigms: Transparent computing,
mobile edge computing, fog computing, and cloudlet. ACM Comput
Surv 52(6):1–36. https://doi.org/10.1145/3362031

4. Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation offloading
and resource allocation in wireless cellular networks with mobile edge
computing. IEEE Trans Wirel Commun 16(8):4924–4938

5. Cai Y, Yu FR, Bu S (2014) Cloud computing meets mobile wireless
communications in next generation cellular networks. IEEE Network
28(6):54–59

6. Khanh TT, Nguyen V, Pham X, Huh E (2020) Wi-Fi indoor positioning and
navigation: a cloudlet-based cloud computing approach. Hum-centric
Comput Inf Sci 10:1–26

7. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Comput
8(4):14–23

8. Dinh HT, Lee C, Niyato D, Wang P A survey of mobile cloud computing:
architecture, applications, and approaches. Wirel Commun Mob Comput
13(18):1587–1611. https://doi.org/10.1002/wcm.1203, http://arxiv.org/
abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcm.1203

9. ETSI (2015) Mobile edge computing–A key technology towards 5G. ETSI
white paper. https://ww.etsi.org/images/files/ETSIWhite-Papers/etsi_
wp11_mec_a_key_technology_towards_5g.pdf. Accessed 10 April 2020

10. Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On
multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration. IEEE Commun Surv Tutor
19(3):1657–1681. https://doi.org/10.1109/COMST.2017.2705720

11. Nguyen VD, Khanh TT, Oo TZ, Tran NH, Huh E-N, Hong CS (2020) Latency
minimization in a fuzzy-based mobile edge orchestrator for IoT
applications. IEEE Commun Lett:1 (Early Access). https://doi.org/10.1109/
LCOMM.2020.3024957

12. Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture
and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

13. Flores H, Su X, Kostakos V, Ding AY, Nurmi P, Tarkoma S, Hui P, Li Y (2017)
Large-scale offloading in the internet of things. In: 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerComWorkshops). pp 479–484

14. Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, Parashar M (2017)
Mobility-aware application scheduling in fog computing. IEEE Cloud
Comput 4(2):26–35

15. Flores H, Srirama S (2013) Adaptive code offloading for mobile cloud
applications: Exploiting fuzzy sets and evidence-based learning. In:
Proceeding of the Fourth ACMWorkshop on Mobile Cloud Computing
and Services MCS ’13. Association for Computing Machinery, New York,
NY, USA. pp 9–16. https://doi.org/10.1145/2497306.2482984

16. Hosseini SM, Kazeminia M, Mehrjoo M, Barakati SM (2015) Fuzzy logic
based mobile data offloading. In: 2015 23rd Iranian Conference on
Electrical Engineering. pp 397–401

17. Sonmez C, Ozgovde A, Ersoy C (2019) Fuzzy workload orchestration for
edge computing. IEEE Trans Netw Serv Manag 16(2):769–782. https://doi.
org/10.1109/TNSM.2019.2901346

18. Duan Q, Wang S, Ansari N (2020) Convergence of networking and
cloud/edge computing: Status, challenges, and opportunities. IEEE
Netw:1–8 (Early Access). https://doi.org/10.1109/MNET.011.2000089

https://ngvandung85@khu.ac.kr
https://khanhtrannnn@khu.ac.kr
https://tringuyendt@khu.ac.kr
https://cshong@khu.ac.kr
https://johnhuh@khu.ac.kr
https://doi.org/10.1145/3362031
https://doi.org/10.1002/wcm.1203
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcm.1203
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcm.1203
https://ww.etsi.org/images/files/ETSIWhite-Papers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://ww.etsi.org/images/files/ETSIWhite-Papers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/LCOMM.2020.3024957
https://doi.org/10.1109/LCOMM.2020.3024957
https://doi.org/10.1145/2497306.2482984
https://doi.org/10.1109/TNSM.2019.2901346
https://doi.org/10.1109/TNSM.2019.2901346
https://doi.org/10.1109/MNET.011.2000089

Nguyen et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:66 Page 18 of 18

19. Sabella D, Vaillant A, Kuure P, Rauschenbach U, Giust F (2016)
Mobile-edge computing architecture: The role of MEC in the Internet of
Things. IEEE Consum Electron Mag 5(4):84–91

20. Hegyi A, Flinck H, Ketyko I, Kuure P, Nemes C, Pinter L (2016) Application
orchestration in mobile edge cloud: Placing of IoT applications to the
edge. In: 2016 IEEE 1st International Workshops on Foundations and
Applications of Self* Systems (FAS*W). pp 230–235

21. Kristiani E, Yang C-T, Huang C-Y, Wang Y-T, Ko P-C (2020) The
implementation of a cloud-edge computing architecture using
OpenStack and Kubernetes for air quality monitoring application. Mob
Netw Appl:1–23 (Early Access). https://doi.org/10.1007/s11036-020-
01620-5

22. Baktir AC, Ozgovde A, Ersoy C (2017) Enabling service-centric networks for
cloudlets using SDN. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). pp 344–352. https://doi.org/10.
23919/INM.2017.7987297

23. Karagiannis V, Papageorgiou A (2017) Network-integrated edge
computing orchestrator for application placement. In: 2017 13th
International Conference on Network and Service Management (CNSM).
pp 1–5. https://doi.org/10.23919/CNSM.2017.8256008

24. Santoro D, Zozin D, Pizzolli D, De Pellegrini F, Cretti S (2017) Foggy: A
platform for workload orchestration in a fog computing environment. In:
2017 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). pp 231–234

25. Hosseini SM, Kazeminia M, Mehrjoo M, Barakati SM (2015) Fuzzy logic
based mobile data offloading. In: 2015 23rd Iranian Conference on
Electrical Engineering. pp 397–401

26. Rathore S, Sharma PK, Sangaiah AK, Park JJ (2018) A hesitant fuzzy based
security approach for fog and mobile-edge computing. IEEE Access
6:688–701

27. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed
coordination function. IEEE J Sel Areas Commun 18(3):535–547

28. Ghosh S, Razouqi Q, Schumacher HJ, Celmins A (1998) A survey of recent
advances in fuzzy logic in telecommunications networks and new
challenges. IEEE Trans Fuzzy Syst 6(3):443–447. https://doi.org/10.1109/
91.705512

29. Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proc
IEEE 83(3):345–377

30. Sonmez C, Ozgovde A, Ersoy C (2018) Edgecloudsim: An environment for
performance evaluation of edge computing systems. Trans Emerg
Telecommun Tech 29(11):3493. https://doi.org/10.1002/ett.3493, https://
onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3493

31. Silva M, Freitas D, Neto E, Lins C, Teichrieb V, Teixeira JM (2014) Glassist:
using augmented reality on Google Glass as an aid to classroom
management. In: 2014 XVI Symposium on Virtual and Augmented Reality.
pp 37–44

32. Guo J, Song B, He Y, Yu FR, Sookhak M (2017) A survey on compressed
sensing in vehicular infotainment systems. IEEE Commun Surv Tutor
19(4):2662–2680

33. Tunca C, Pehlivan N, Ak N, Arnrich B, Salur G, Ersoy C (2017) Inertial
sensor-based robust gait analysis in non-hospital settings for neurological
disorders. Sensors 17(4):825. https://doi.org/10.3390/s17040825

34. Kumar A, Sharma K, Singh H, Naugriya SG, Gill SS, Buyya R (2021) A
drone-based networked system and methods for combating coronavirus
disease (COVID-19) pandemic. Futur Gener Comput Syst 115:1–19.
https://doi.org/10.1016/j.future.2020.08.046

35. Kumar A, Srikanth P, Nayyar A, Sharma G, Krishnamurthi R, Alazab M (2020)
A novel simulated-annealing based electric bus system design, simulation,
and analysis for Dehradun Smart City. IEEE Access 8:89395–89424

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/ 10.1007/s11036-020-01620-5
https://doi.org/ 10.1007/s11036-020-01620-5
https://doi.org/10.23919/INM.2017.7987297
https://doi.org/10.23919/INM.2017.7987297
https://doi.org/10.23919/CNSM.2017.8256008
https://doi.org/10.1109/91.705512
https://doi.org/10.1109/91.705512
https://doi.org/10.1002/ett.3493
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3493
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3493
https://doi.org/10.3390/s17040825
https://doi.org/10.1016/j.future.2020.08.046

	Abstract
	Keywords

	Introduction
	Related works
	Flexible computation offloading in a fuzzy-based mobile edge orchestration
	System model
	Packet success ratio versus packet length
	Fuzzy logic system for the placement problem
	Fuzzy logic system for the deployment problem

	Performance evaluation
	Average WLAN delay based on each application type
	Average failed-task rates based on each application type
	Average service time based on each application type

	Conclusions
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

