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Abstract

Double auctions are considered to be effective price-scheduling mechanisms to resolve cloud resource allocation
and service pricing problems. Most of the classical double auction models use price-based mechanisms in which
determination of the winner is based on the prices offered by the agents in the market. In cloud ecosystems, the
services offered by cloud service providers are inherently time-constrained and if they are not sold, the allocated
resources for the unsold services are wasted. Furthermore, cloud service users have time constraints to complete their
tasks, otherwise, they would not need to request these services. These features, perishability and time-criticality, have
not received much attention in most classical double auction models. In this paper, we propose a cloud priority-based
dynamic online double auction mechanism (PB-DODAM), which is aligned with the dynamic nature of cloud supply
and demand and the agents’ time constraints. In PB-DODAM, a heuristic algorithm which prioritizes the agents’ asks

resource allocation

and bids based on their overall condition and time constraints for resource allocation and price-scheduling
mechanisms is proposed. The proposed mechanism drastically increases resource allocation and traders’ profits in
both low-risk and high-risk market conditions by raising the matching rate. Moreover, the proposed mechanism
calculates the precise defer time to wait for any urgent or high-priority request without sacrificing the achieved
performance in resource allocation and traders’ profits. Based on experimental results in different scenarios, the
proposed mechanism outperforms the classical price-based online double auctions in terms of resource allocation
efficiency and traders’ profits while fulfilling the double auction’s truthfulness pillar.

Keywords: Priority-based dynamic online double suction, Mechanism design, Cloud secondary market, Dynamic

Introduction

The cloud ecosystem is a business model that needs
an appropriate pricing mechanism to satisfy service
providers, as well as service users to survive and grow
in the current competitive markets [1]. One of the
most prevalent pricing methods is an on-demand pricing
model. Since in the on-demand pricing model, customers
of cloud computing resources have full control over their
operational costs, and they can start and end the use
of resources according to their needs, the on-demand
pricing model is desirable for them [2, 3]. This mechanism
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is not equally able to meet the interests of cloud ser-
vice providers, as they are interested in planning and
preparing for the future by buying the necessary resources
and services in advance. An accurate estimation of the
future needs cannot be achieved to service providers by
the on-demand pricing method. The dramatic changes
in cloud environments and the lack of a long history of
using cloud services make it difficult for service providers
to predict accurately and appropriately the capacity of
needed resources and services. Furthermore, upgrading
technological infrastructure is extremely costly for service
providers. Since the capacity and quality of computing
technologies are increasing every day, and their prices
are constantly decreasing, service providers would be bet-
ter off postponing infrastructure upgrade as much as
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possible [4]. Predicting the right time to upgrade their
infrastructure is a difficult task that the on-demand
pricing model further complicates. Moreover, the appro-
priate number of support staff [5] and the required power
[6] are among the variable parameters that are achieved
only by knowing the number of users’ service requests in
advance. On the one hand, over-investing in infrastruc-
ture and support staff is a waste of resources. On the other
hand, not providing the users’ needed resources and sup-
port staff cause Service Level Agreement penalties for the
providers and damage their reputations. Among the cloud
services, scheduling Virtual Machine (VM) instances effi-
ciently in Iaa$ is a challenging problem if users do not
indicate their requests in advance [7, 8]. Calculating the
amount needed to invest in infrastructure and the right
number of support staff, and scheduling the VMs effi-
ciently, require sufficient knowledge of the needs of users
in future time windows, which on-demand pricing models
cannot provide.

Futures contracts and options contracts are two alter-
native pricing models to ensure that users have access to
their needed resources in the future, usually by paying
a reduced price in advance. The former method obliges
users to own what they have bought, while in the lat-
ter method users have the legal right but no obligation
to take ownership of what they have bought [9]. In this
way, users have the opportunity to reserve their VMs by
paying a reduced price in advance, and service providers
benefit from an accurate estimation of their future needs.
One of the cloud’s leading service providers, Amazon
Web Services (AWS) offers 12-month and 36-month pre-
order VMs to its service users, which is called Reserved
Instances. AWS reserved instances make it possible for
users to attain their requested VMs at a relatively low
price compared to on-demand instances, and the longer
the contract, the lower the VM cost.

The key question is, is it possible to have the freedom
of action and the benefits of on-demand pricing mod-
els for service users at a lower price, and at the same
time, provide the information needed by service providers
to predict and prepare for future needs, the way futures
contracts and options contracts do?

Paper [10] introduces a broker role that acts as a medi-
ator between service providers and service users. In this
case, brokers buy 12-month or 36-month packages and
divide them into smaller chunks and provide them to the
service users. In [11], buyers who have consumed part
of their purchased 12-month or 36-month packages can
repackage their service surplus and sell it to demanded
service users. Both these mediators, brokers and reseller
buyers, create a secondary market and take the role of
service providers for this new ecosystem.

In cloud primary markets, service providers directly
communicate with their service users and offer their
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services mainly through either on-demand mechanism
or futures and options contracts. The advantages of the
on-demand method for users are the flexibility of ser-
vice usage time and cost management. One of the dis-
advantages of this method is the relatively high price of
the offered services. Another disadvantage is that ser-
vice providers cannot obtain the necessary information
that they need to predict the future needs of the mar-
ket. In contrast, in futures and options contracts, ser-
vice providers can accurately predict the market’s future
demands, and service users benefit from much lower
prices than on-demand ones. But the flexibility of service
time and cost management are not available in futures and
options contracts. Cloud secondary markets are created
in response to the challenges of cloud primary markets
to benefit from the advantage of on-demand methods, as
well as futures and options contracts. The characteristics
of these two environments, cloud primary markets and
cloud secondary markets, are completely different from
each other. In primary markets, resources are available to
service providers, and if service providers are not able to
sell their services, they can shut down inactive servers and
save on their running costs. In cloud secondary markets,
brokers and reseller buyers have attained their resources
from service providers of the cloud primary market in the
form of timed packages. As unsold packages do not trans-
fer to the next interval, the mediators, brokers and reseller
buyers need to sell their packages to service users as much
as possible, or else, these packages will perish.

In this paper, we focus on such secondary markets in
which mediators, brokers and reseller buyers, play the
role of service providers to provide VMs to service users.
To avoid confusion in the rest of this paper, we will use
the term “service provider” instead of a mediator, bro-
ker, or reseller buyer, to indicate the secondary market’s
service providers. In such markets, we need to consider
the time-criticality and perishability of VMs, as if these
VMs are not traded in each round, they will not trans-
fer to the next rounds. These VMs will perish, and their
salvage value will become zero if they are not used or
traded. Given the many-to-many relationships between
service providers (sellers) and service users (buyers) in
these secondary markets, double auction mechanisms are
of the best choices to meet our needs. In such dou-
ble auction mechanisms, sellers and buyers submit their
asks and bids, respectively, to an auctioneer and the auc-
tioneer matches them up. Time-criticality, perishability,
and task priority have not received enough attention in
the studies of double auction mechanisms for Iaa$S in
cloud ecosystems. Not considering the perishability and
time constraints of providers’ services and users’ demands
can drastically impact resource allocation, as well as
the overall social welfare. Double auction mechanisms
fall within the category of dynamic pricing. Compared
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to fixed-price-scheduling mechanisms, dynamic pricing
approaches provide higher resource allocations and
maximize social welfare (a.k.a agents’ utility) for both ser-
vice providers and service users of the cloud. In dynamic
pricing models, double auctions are suitable mechanisms
that benefit from high clarity and relatively low com-
putational complexity and can appropriately deal with
self-interested and strategic behaviours of cloud service
agents (providers and users) [12, 13].

The current double auctions in cloud ecosystems have
not sufficiently addressed the effect of perishability and
time-criticality on resource allocation and system utility
[14]. The time-criticality concept is important not only for
service providers but also for service users. If service users
do not receive requested resources before their deadline,
they are subject to losing their profits. This issue then
causes service providers to lose unsatisfied service users
as well. In short, time-criticality is rooted in the perish-
able nature of the services and resources in the secondary
market of JaaS ecosystems.

From another perspective, not all users and tasks have
the same level of priority and urgency. For instance,
administrative tasks should receive high priority to guar-
antee that the whole process remains functional. On the
other hand, cloud service providers need to be able to offer
different quality of service, e.g. platinum, gold or silver
membership services, based on the demands and budgets
of cloud service users. In all of these cases, priority, as
an essential parameter in cloud computing environments,
in general, and in IaaS secondary markets in particular,
should be considered.

In [15, 16], and [17] the concept of time-criticality and
perishability have been studied for perishable services,
and in [18] the perishablity concept has been studied
for perishable goods. The VMs in laaS secondary mar-
kets have unique characteristics and do not fit perfectly
in either the perishable service or perishable goods cate-
gories. Hence, we cannot directly apply perishable service
or perishable goods methods to the IaaS secondary market
ecosystem, and we have to tailor the required algorithms
and formulas.

To the best of our knowledge, in the double auction
mechanisms of laaS secondary markets that facili-
tate resource allocation and price-scheduling, the time-
criticality, task priority and perishable nature of resources
and services were not considered thoroughly. Despite
all the value added features of proposed double auction
mechanisms, considering the perishability and the time-
criticality of cloud resources and services can improve the
overall resource allocation efficiency and agents’ utility. In
classical double auction approaches, the main goal is to
find the best pair of ask and bid matches, even though
potential trades and of invested resources maybe lost.
Based on the stochastic nature of cloud service demands
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and the perishability of cloud resources and services, find-
ing a balance between supply and demand to increase the
trade success rate is complicated. This paper leverages the
positive features of current double auctions while con-
sidering the perishability and time-criticality of resources
and services to increase the number of successful trades.
It increases the level of resource allocation, as well as the
overall social welfare.

In short, the contribution of the present article is sum-
marized in the following:

e The state-of-the-art price-based double auctions do
not thoroughly address the time-criticality of the
participants’ tasks. In this paper, a priority-based
dynamic double auction model is proposed which
considers the perishability and time constraints of the
involved parties’ activities in IaaS secondary markets.

e Based on the suggested model, we propose a
mechanism that improves the successful-trade rate
by increasing the matching rate factor and the overall
utility. To prioritize the time-critical tasks, we have
defined ask and bid satisfiablity factors to measure
the criticality of the sellers’ asks and the buyers’ bids.
Moreover, a defer rate is defined to delay the
matching process to accept any high-priority or
urgent incoming task without sacrificing the
performance in resource allocation and traders’
profits.

e By running an extensive number of simulations in
different scenarios, it has been shown that the
proposed model is superior to the price-based model
in terms of resource allocation and social welfare.

The rest of this paper is organized in the following
manner: in “Related work” section the state-of-the-art
studies in the field of cloud resource allocation and
price-scheduling have been reviewed. Next, the sys-
tem model and problem statement are explained. In
“Proposed approach: Priority-based dynamic online
double auction mechanism (PB-DODAM)” section,
the Priority-based Dynamic Online Double Auction
Mechanism (PB-DODAM) is thoroughly explained,
followed by its priority-based allocation algorithms and
price-scheduling mechanisms. In “Experimental results”
section, the experimental results are provided and the
characteristics of the proposed mechanism in different
scenarios are analyzed. Finally, the paper is concluded
by discussing the proposed mechanism’s features and
research directions for future work.

Related work

The auction is one of the most prevalent economic
mechanisms that is widely used for resource allocation
and price-scheduling in multi-agent environments, which
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are proposed in various types [19]. Single-sided, double-
sided, combinatorial auctions and their subsets have been
used in cloud ecosystems for resource allocation and
price-scheduling [15]. The following is a review of some
of the recent papers in price-scheduling and resource allo-
cation that use diverse types of auctions in cloud environ-
ments. We have classified these studies into single-sided,
double-sided, and combinatorial auction groups.

Single-sided auction models

Kong et al. presented an adaptive VM algorithm for
resource scheduling which uses a single-sided auction
mechanism and considers a number of factors, includ-
ing network bandwidth and auction deadlines [20]. Cloud
property evaluation, VM configuration and finally auction
payment are the steps of the suggested approach in this
paper. These steps are designed to sort the users’ bids in
the auction’s time-frame and to determine winning users.
Moreover, it calculates payments and confirms the values
received by the auctioneer. As the algorithm was designed
to maximize the cloud service providers’ profits, it suffers
from the potential for monopolistic behaviour. Further-
more, the target is to increase resource utilization without
a clear policy for price-scheduling.

To manage a dynamic VM allocation, Nejad et al.
proposed an integer programming model where ser-
vice providers specify the market price and provide the
requested VMs to the winning users [21]. As they have
relied upon from a single-sided auction model in their
proposed approach, their mechanism is at risk from
monopolistic providers’ behaviours.

None of the above work has addressed time-criticality
and task priority in single-sided auction models. The fol-
lowing paper uses a single-sided auction model to address
perishability and time-criticality. Their environment is
different from Iaa$S secondary markets, which are the main
focus of our paper.

Nadjaran Toosi et al. proposed a prompt adoption
mechanism, using a dynamic price-scheduling approach
to keep the balance for cloud resources in supply and
demand markets [14]. This paper relied on a single-sided
auction mechanism and is the main paper that uses the
concept of perishable goods in providing price-scheduling
mechanism for resources at the cloud data-centre level.
This work calculates reserve prices based on electricity
costs and data-centre Power Usage Effectiveness (PUE)
for cloud data-centre resources. The proposed method
is almost incentive-compatible while obtaining a nearly
optimal benefit for cloud service providers, making the
mechanism biased towards the providers. Moreover, as
the research focuses on the data-centre resource level, it
does not provide any solution for cloud offered services or
engaged resources at the service level.
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Double-sided auction models

Kumar et al. provided detailed research on different types
of double auctions, considering a variety of challenges
and obstacles to increasing the overall performance [22].
A truthful resource allocation and a price-scheduling
mechanism are proposed as a truthful multi-unit dou-
ble auction model (TMDA). The model tries to provide
an incentive-compatible double auction mechanism while
maintaining acceptable levels of other double auction
pillars.

Wang et al. proposed a fitness-enabled auction mecha-
nism as a new approach in cloud resource allocation that
secures the performance traits for both service providers
and service users [23]. Compared to continuous double
auctions that do not benefit from the fitness idea, the
fitness-enabled auction mechanism outperforms similar
approaches in terms of resource allocation efficiency. In
this paper, the high-level cloud services are more likely to
receive higher quality resources.

Yashwant et al. proposed a double auction mechanism
to balance energy-efficient resource allocation and ser-
vice providers” social welfare, whereas most of the cur-
rent research does not consider both sides [24]. Their
proposed solution is a truthful double auction mecha-
nism based on the Vickrey-Clarke-Groves (VCG) algo-
rithm. Using a multi-dimensional bin-packing approach
increased the performance of the algorithm compared to
the inherent NP-hard computational complexity of sim-
ilar mechanisms. Social welfare maximization is biased
towards service providers and is not equally fair to both
cloud service providers and cloud service users.

Wei et al. presented a resource allocation mechanism
using the imperfect-information Stackelberg game model
[25]. In this paper, the available historical demand records
are used in a hidden Markov model to predict cloud ser-
vice providers’ current prices for their offered resources.
Their dynamic price predictions are utilized in the pro-
posed imperfect information Stackelberg game model
(IISG). This approach also provides an optimal price-
scheduling mechanism for service providers to maximize
their social welfare. Since the IISG model yields an NP-
hard problem, the authors consider the price-scheduling
and resource allocation mechanisms from the service
providers’ perspective, which could impose monopolistic
behaviour.

A P2P cloud or peer-assisted cloud is a decentralized
type of cloud environment that utilizes a number of dis-
similar computers [26]. Paper [27] put forward a hierar-
chical double auction algorithm for peer-assisted cloud
ecosystems. In this paper, a non-cooperative game is pro-
posed in which the agents compete over bandwidth allo-
cation. The proposed algorithms cannot be used directly
in client-server cloud architectures.
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Formulating the VM provisioning problem and calcu-
lating the actual number of VMs are not trivial tasks.
Paper [28] is one of the latest studies that utilize
Lyapunov optimization techniques to design a cost-aware
algorithm to calculate the accurate number of VMs which
are requested by users in cloud environments. We can
consider this paper as the enhancement of classical double
auction mechanisms in IaaS environments that provides a
VM allocation mechanism, as well as a price-scheduling
model. It selects the second-price auction mechanism
for calculating the VM price and the allocation phase.
The paper asserted that the original VCG mechanism
does not benefit from budget-balancing. Hence, their
offered C-DSIC mechanism suffers from a lack of budget-
balancing. Therefore, their proposed C-BIC mechanism
uses a Bayesian incentive-compatible approach to alleviate
this problem. As a result, the proposed model fulfills the
individual rationality property of double auctions, while
supporting the budget-balancing feature to an accept-
able extent. The feasibility and efficiency of the proposed
algorithm are represented and proven by the simulation.

The perishability and time-criticality of cloud resources
and cloud services, as well as the task priority, were not
addressed in any of the above-mentioned double auction
models in cloud ecosystems.

Paper [29] is one of the pioneering work that has
added the concept of time to a classical single-valued
double auction mechanism. This paper uses Maximum-
weighted Bipartite Matching Allocation (MBM Alloca-
tion) for resource allotment and thereby strives to priori-
tize tasks that are closer to the deadline to maximize the
overall social welfare. The proposed mechanism consid-
ers a single unit of trade. Therefore, it does not contain
the required generality for cloud-like environments that
the trade of multiple units of resources happens regu-
larly. Moreover, in this work, the agents who participate
necessarily have dissimilar reports in the auction. This
is not a true assumption for environments such as cloud
ecosystems that some service providers and some service
users with the same specifications can join the auction.
The proposed mechanism cannot handle matching such
cases, and this mainly goes back to the inherent limita-
tions of augmentation techniques in graph theory, which
authors utilized to implement their algorithm. Moreover,
the order of implementation of MBM allocation and its
offered Min-Max payment is O(#%), which is not appro-
priate for ever-growing capacity of environments such
as cloud ecosystems. Furthermore, this paper does not
regard the tasks with higher priorities that need to be
considered in cloud ecosystems.

Miyashita et al. proposed an online double auction
mechanism for perishable goods that considers time-
criticality of the products in trades. The focus of this
paper is on reducing the trade failure rate to increase the
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efficiency [18]. Moreover, this research proves that con-
sidering the time-criticality of the products improves the
agents’ welfare as well. As paper [18] works on perish-
able goods, its methodologies cannot be directly applied
to cloud resources and services in IaaS secondary markets.

Combinatorial auction models

In combinatorial auction models for clouds, the compo-
nents that compose the cloud, e.g. CPU, storage, memory,
and network, are considered to define different cloud
types. In paper [30], a combinatorial one-to-many auction
mechanism offered as Combinatorial Auction-Linear Pro-
gramming (CA-LP) and Combinatorial Auction-Greedy
(CA-GREEDY) provides a higher efficiency and util-
ity, compared to fixed-price-scheduling. The single-sided
auction mechanism in [30] has the risk of monopolistic
behaviour which is one of the drawbacks of any one-
sided auction. To resolve this problem, Samimi et al. in
[13] offered a combinatorial double auction resource allo-
cation (CDARA) that uses price averages for the final
trade prices. CDARA suffers from the lack of truthful-
ness in its proposed mechanism. Paper [31] proposed
A Fair Multi-attribute Combinatorial Double Auction
Model (FMCDAM), which is founded on [13] and [32],
for resource allocation in cloud environments. This paper
focuses on the efficiency in allocation and fairness in
price-scheduling, using a greedy allocation method and
average price-scheduling respectively. In fact, using the
service providers’ reputation and the Quality of Service
(QoS) as the involved parameters in the allocation and
the pricing of the proposed method distinguishes FMC-
DAM from similar attempts and studies. Chen et al.
offered greedy-based combinatorial double auction algo-
rithms for homogeneous and heterogeneous platforms
to increase the allocation efficiency and social welfare
[33]. However, this paper does not include any payment
mechanism in the proposed double auction.

G. Vinu et al. offered a combinatorial auction mecha-
nism in [34], which provides the possibility of choosing
different resources from various cloud providers or cloud
vendors. Providing arbitrary packages of cloud resources
from a diverse range of cloud providers and cloud vendors
is the main distinguishing factor of the above-mentioned
research. T. Bahreini et al. provided a two-level resource
allocation and price-scheduling mechanism in edge com-
puting systems [35]. The offered mechanism is based on
cloud or edge resource allocation, and their price evalua-
tion is based on a multi-unit combinatorial auction, as well
as a position auction approach. In position auction, users
have dissimilar preferences for using each resource, and
the preference definition is based on the average distance
between the resources and the service users. However, the
preference definition does not include the task priority of
the offered or requested services.
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Focusing on both sellers’ and buyers’ benefits, paper
[36] applies a double-sided combinatorial auction (DCA)
for resource allocation in Transparent Computing (TC),
which is considered the future of network computing.
The idea is to maximize the social welfare while keep-
ing the other double auction pillars at acceptable levels.
Although the network bandwidth as the main param-
eter of TC is inherently perishable, the research did
not consider its perishablity. This paper only focuses on
increasing the bandwidth fairness by prioritizing the tasks
based on available historical data. To simplify the process,
a stochastic modelling was preferred over probabilistic
ones. The idea is to increase the chances of winning for the
low-bid participants in the auction, while not consider-
ing time-criticality and perishability to decrease the trade
failure rate.

Paper [37] is one of the more recent studies that
offer a game-based combinatorial double auction mech-
anism to model a relationship between Infrastructure
Providers (INP) and Service Providers (SP). As cloud
ecosystems deal with several different components, it is a
multi-dimensional combined resource environment. Tra-
ditional cloud price-scheduling models are mostly based
on the average price of resources engaged in the process.
This paper proposed a more accurate pricing approach
by offering a combinatorial double auction mechanism
based on an incomplete information game theory. Both
INPs and SPs are self-interested entities and their goal
is to maximize their profits, and they are not aware of
each other’s true valuation. Compared to the traditional
cloud pricing model, this study utilized an incomplete
information game to provide a more accurate price-
scheduling mechanism. Using a Harsanyi transformation,
this research can convert the proposed combinatorial
double auction model into a complete, but imperfect
information game mechanism.

None of the above combinatorial auctions consider the
time-criticality and the task priority in the IaaS secondary
markets, which is the focus of the current paper.

In this paper, we will show that using time-criticality,
perishability, and task-priority can drastically improve
resource allocation and the overall social welfare in
cloud secondary markets. Our proposed model, Priority-
based Dynamic Online Double Auction Mechanism (PB-
DODAM), is described in the following sections.

System model and problem statement

The ordinary double auctions for clouds are price-based,
and their main objective is to find the best pairs of
asks and bids to be matched. In contrast, in condi-
tions where passing the time decreases the chances of
successful trades, the time-criticality and task priority
should be taken into consideration. These two factors are
not well-addressed in the current double auction models
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for cloud ecosystems. Our proposed approach, priority-
based dynamic online double auction mechanism (PB-
DODAM), offers a double auction model for the IaaS
secondary markets in cloud environments that takes time-
criticality and task-priority factors into account.

In our priority-based dynamic online double auction
model, there are a number of auction rounds which are
called time-slots. The time-slot is determined as a discrete
parameter, which is indicated by ¢, and each time-slot con-
tains a number of minutes as our designated time unit and
is represented by . We also have the concept of period,
represented by p, which means the length of time that an
agent has been on the market. In other words, the period
is the time interval between the entrance and exit of an
agent in the time-slot ¢ and during the available ¢ minutes
in that time-slot. Cloud service providers as sellers (S) and
cloud service users as buyers (B) play the role of agents
in the proposed model. The proposed model designed for
a generic cloud environment that offers Infrastructure as
a Service (IaaS) to its users in secondary markets and the
agents are willing to trade some VMs as their trading units
in the market. To simplify the experiment conditions, we
consider that agents trade one type of VMs. Every service
provider can offer a number of VMs, defined as o VAMs,
where « is an integer number, e.g. 12 VMs. Similarly, every
service user can order a number of VMs. In every auction
round, a number of VMs will be traded among the agents
and at the end of each round the market will be cleared.
Table 1 represents the notations which are used in this
paper.

Every agent at time-slot ¢ within the period p has
its specifications which are called type, as defined in
Definition 1.

Definition 1 (Agent type definition) : Each agent i is
defined with its type 0; as follows:

0; = (vi, qi, ai, d;) (1)

In Eq. 1, v; represents a single unit valuation, whereas g;
identifies the number of VMs which agent i wants to trade.
The agent’s arrival and departure times are indicated by a;
and d;, considering that d; > a;. Moreover, both 4; and
d; occur within a time-slot ¢. All of the above-mentioned
parameters for the 6; are non-negative numbers. The trad-
ing period [ a;, d;] for the agents is represented by p. Every
agent can participate in the auction in a number of trading
periods in different time-slots. In each trading period, the
arrival time could be the time that an agent wants to trade
or the time that the agent becomes aware of the auction.
The departure time for service providers is the time that
they receive their price, whilst for service users it is when
they complete their payments. Considering zero to be the
value that service users are willing to pay and oo to be
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Table 1 Notations

Symbols Descriptions
S Cloud service providers (sellers)
B Cloud service users (buyers)
t Time-slot
t Time (within each time-slot)
o Number of VMs (@ € N)
0; Type of agent i
12 Collection of all agents’ types
ot Collection of all agents’ types in time-slot t
st Collection of all agents’ types from the beginning
till the end of time-slot ¢
Vi The single unit valuation by agent i
gi The total VMs' quantity that agent /i wants to trade
a The agent's arrival time
d; The agent's departure time
Agent's presence period in a time-slot
U,-é[ Seller's i utility at time-slot t
Ujér Buyer’s j utility at time-slot t
P Payment rule
Sij Seller's obtained value from the auctioneer
bij Buyer's payment value to the auctioneer
Q Allocation rule
Mt Matchable pairs of asks and bids at time-slot t
a,-(é[) Seller's ask satisfiability in time-slot t
c?(éf) Seller's ask criticality in time-slot t and time t/
aj(ét) Buyer’s bid satisfiability in time-slot t
Cf(éf) Buyer’s bid criticality in time-slot t and time t/
T Satisfiability threshold
@ () Market price
EAG) Agent i's defer rate
e Defer rate threshold

the value that service providers are willing to receive pro-
vides an empty window when no trade happens. As in the
real world, the agents are self-interested and do not reveal
their information, so we have considered the agents’ types
to be private data. Agents can change their types in each
time-slot, whereas they cannot enter the same bid if they
depart once in that time-slot, but they can participate in
the next round.

In our proposed model, the service provider i offers
their VMs at the arrival time a;, and the salvage value
of the unused VMs becomes zero unless the VMs are
traded successfully before the departure time d;. For the
service provider i, v; is the combination of production and
opportunity costs for each VM, which disappears at the
departure time if no trade happens. This imposes the risk
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of not compensating the costs in the case of trade failure.
On the other hand, the service user j evaluates the value of
their received VMs as v; if their designated task is accom-
plished within their time limit. @; denotes the time when
the service user j values VMs, and dj represents the max-
imum time to receive their VMs, and there is no use in
receiving them any moment later.

To simplify the proposed model, we have assumed that
each agent can offer only one ask/bid in every time-slot
t. All the types of agents in time-slot ¢ are represented by

6!, while § = {él, 62, ...,6°, } serves for all agents’ types

for the whole duration of the auction. §<¢ represents the
agents types from the first time-slot till the end of time-
slot ¢. Gfg = (vf , qf’ , af? , df ) is an agent i’s type in the period
p, whereas 6! = (f/f/, ¢, d, & ) denotes the type of agent
iat time ¢/, while ¢’ € [af, df].

The following describes the matching condition for
every pair of the seller’s ask and the buyer’s bid:

Definition 2 (Matching requirements) : For every
seller’s ask in period p, when the seller’s type is éf =
(¥, qt,a’,d") in time-siot t and for every buyer’s bid in
period p, when the buyer’s type is QA; = (f/]'?, qf,af ,df ) in
time-slot t, matching happens when the following condi-
tions are fulfilled:

The first condition describes that the seller’s ask should
be less than the buyer’s bid. The second condition sug-
gests that sellers’ and buyers’ time-slots overlap. The
third condition implies that the seller i should continue
providing the requested services (i.e. the needed VMs) as
long as it fulfills the buyer j’s request. The fourth condition
implies that the requested resources from buyer j should
be a positive value.

An online double auction mechanism is formulated as
M = {P, Q}, where P denotes the payment rule and Q rep-
resents the allocation rule. The payment rule P is defined
as P! = (s%,b’), where both s’ and b’ are non-negative
numbers. sf’j depicts what seller i obtains from the auc-
tioneer in time-slot ¢ as a result of the trade with buyer ;.
Similarly, bf is what buyer j pays to the auctioneer in time-
slot ¢ as a result of the trade with seller i. In this paper,
we have assumed that the proposed double auction is a
Strong Balanced Budget, which means that the auctioneer
neither gains nor loses any profit in the auction, and as a
result, s;; = bf .



Dibaj et al. Journal of Cloud Computing: Advances, Systems and Applications

Common approaches taken to calculate the utility func-
tion in double auctions does not consider the time-
criticality and perishability [38]. Considering v; to be
the valuation of cloud agent i for a VM, the common
utility function for seller i is calculated as Zj(si,j —viQij)
and for buyer j, it is calculated as ) ;(v;Q;; — b;;). Both
of these formulas are simple quasi-linear equations. For
sellers, the utility function is the difference between what
they receive from the auctioneer and what they evaluate
as the price for their offered services. However, for buy-
ers, the utility function is the difference between what they
assessed as the value of their received services and what
they actually pay the auctioneer. In our proposed priority-
based dynamic online double auction approach, the utility
function for seller i is calculated based on the deduction
of untraded units’ value from the common seller utility
function. In other words, the priority-based sellers’ utility
is calculated based on the difference between what they
receive and what they evaluate as the price of the traded
units, minus the value of unsold VMs that are considered
perished. The concept is illustrated by the next definition.

Definition 3 (Priority-based seller’s utility) : The fol-
lowing equation calculates the seller’s utility in time-slot t
which is obtained between the time of arrival and the time
of departure:

ul = > D Gsij = viQip)

Ve [af,df] ieS,jeB

- Z (qi — Qipvi

t’=df ieS,jeB

The first part of the Eq. 2 is similar to the classical quasi-
linear utility function that we use for common online
double auctions, whereas the second part of the equation
calculates what sellers lose for their unsold VMs when
they depart. g; represents the total available VMs, whereas
Q;; denotes the number of VMs that the sellers have sold
before the departure. The subtraction of these two val-
ues expresses the number of unsold VMs. In other words,
the second part of the equation is the utility loss which
was caused by the perishable nature of cloud services in
IaaS secondary markets and is taken for granted in classi-
cal price-based approaches. This potential loss is the main
reason to encourage sellers to modify and decrease their
evaluation before their departure time.

The utility or the surplus that any buyer achieves is
captured in the next definition.

Definition 4 (Priority-based buyer’s utility) : The fol-
lowing equation calculates the buyer’s utility in time-slot t
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which is obtained between the time of arrival and the time
of departure:

u}s‘jt - Z Z (viQij — bij) (3)

t’e[af,df] ieS,jeB

In this paper, we assume that the engaged agents aim
to maximize their utility and are risk-neutral entities. In
Eq. 2, there is a trade-off between selling at high prices and
having more successful trades. If a seller sells their VMs
at higher prices, they can achieve more benefit. However,
this can decrease the trade success rate and waste the
unsold resources and services. On the other hand, low-
ering the prices increases the chance of successful trade
while decreasing the direct benefit of the sold VMs. The
trade-off between raising the prices and increasing the
number of successful trades complicates the process of
finding an appropriate trading price in each time-slot. On
the one hand, time-criticality for sellers is defined as sell-
ing their VMs before the departure time and leaving no
unsold resources or services as much as possible. On the
other hand, the time-criticality for buyers is to accom-
plish their tasks before certain deadlines. In Eq. 3, buyers’
profits increase by obtaining high-value VMs at lower
costs. Considering buyers’ tasks time-criticality and
attempting to gain more profits by bidding for lower
prices makes it difficult for buyers to find appropriate
price-scheduling strategies.

Based on the defined sellers’ and buyers’ concerns, the
utility maximization objective in our model is explained in
the following definition.

Definition 5 (Priority-based utility maximization) : In
an online double auction M = {P,Q}, where P is the
payment rule and Q is the allocation rule, the utility max-
imization function is responsible for selecting the payment
and allocation rules that maximize the overall benefits.
The following formula calculates the utility maximization
in time-slot t which is obtained among the intersection of
agents’ presence in the time-slot:

U,-ét = Z Z (v; —vi)Qij

e[l o ]) N

-2

— g7
t'=d"

(4)
> @i— Qv

ieS,jeB

In the first part of Eq. 4, the social welfare maximiza-
tion is defined through (v; — v;)Q;;, and the second part,
(gi — Qij)vi, represents the benefit loss which has come
from the untraded VMs.
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No online double auction mechanism can optimize
individual rationality, budget-balancing, truthfulness, and
computational efficiency at the same time [39], and our
approach is no exception. The ideal case is design-
ing a strategy-proof mechanism that satisfies budget-
balancing and computational efficiency. Green et al. [40]
have proved the seminal impossibility of this setting
and have asserted that no double auction can optimize
both budget balance and efficiency at the same time.
Myerson et al. in [41] have proved a more general version
of this theorem. Our proposed mechanism satisfies the
individual rationality, budget-balancing, and truthfulness,
while trying to increase the computational efficiency.
Sellers’ utility, buyers’ utility, and utility maximization
guarantee the individual rationality property of our
proposed online double auctions. Satisfying the strong
balanced budget feature means the auctioneer receives or
loses no benefit in any trade. Truthfulness implies that
the agents have no incentive to misreport their types,
which means there is no reason to falsely report the arrival
or departure time of the agents. Increasing the success-
ful trade ratio, as well as reaching for a better allocation
efficiency, are the main goals of the current research,
which can be achieved by using the utility maximiza-
tion function. In short, the utility maximization func-
tion verifies the computational efficiency increment in
our approach. At the same time, our proposed approach
satisfies the individual rationality, budget-balancing,
and truthfulness features of online double auction
mechanisms.

In our proposed mechanism, we have assumed that
the auctioneer does not play the role of short posi-
tion which is known as feasibility feature. In the next
section, we will discuss our proposed approach in more
detail.

Proposed approach: Priority-based dynamic online
double auction mechanism (PB-DODAM)

Due to the self-interested human tendency to try to max-
imize profit, sellers tend to raise their asks while buy-
ers tend to lower their bids. This rational strategy can
boost the agents’ benefit as long as they do not face
the risk of losing the trades. In durable goods markets,
trade failure in each round can be proceeded with the
success in the next round, while this is not the case
for perishable goods or services. If service providers do
not trade their VMs, their resources will be perished
for that time-slot. For this reason, we need to consider
perishabilty, time-criticality, and task-priority factors in
our mechanism. In general, any online double auction
consists of two major phases which are allocation and
pricing mechanisms, and we will discuss these two mech-
anisms in our proposed approach in the proceeding
sections.
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Proposed allocation mechanisms

Maximizing the social welfare is the main objective of allo-
cation mechanisms in static durable goods markets which
is achieved by matching higher users’ bids with lower
sellers” asks. The summation of differences between all
matched pairs of asks and bids calculates the social welfare
in such markets. The maximal social surplus is the result
of an ideal scenario which matches all existing asks and
bids in the market. Allocation efficiency is one of the most
important metrics in a competitive equilibrium to evalu-
ate the effectiveness of any allocation mechanism. In our
proposed method, matching rate is considered to be an
indicator for the allocation efficiency. The matching rate
is the result of splitting the current social surplus by the
maximal social surplus.

To maximize the allocation efficiency in double auc-
tions for durable goods in static markets, the sellers’ asks
should be sorted in ascending order, whereas the buyers’
bids should be sorted in descending one. The next phase
is to match the lower asks with higher bids until there
is no unmatched pairs left in the market. This allocation
approach is called the price-based allocation mechanism.

The price-based allocation mechanism works the best
in conventional spot markets for durable goods or ser-
vices. In these markets, failure in trading units in one
round causes no harm to the salvage value of unsold units
of goods or services, and they can be traded in future
rounds. On the contrary, in the market for the perishable
goods or services, such as [aaS secondary markets in cloud
environments, the improvement in the successful trade
rate should be considered along with the social surplus
growth.

To increase the number of successful trades, one of the
current approaches is to match high value bids with high
value asks that are not above the bids valuation, and low
value asks with low value bids that are not below the asks
valuation. Although this approach can increase the alloca-
tion efficiency, it cannot tackle the perishability problem
and prevent the loss that happens due to the trade fail-
ures. This is why we have considered criticality as a new
parameter that can evaluate the trade urgency of offered
productions or services in online double auctions. The
role of criticality is to increase the trade chances of unsold
units that arrive closer to their departure time and to
increase the successful trade rate.

In this paper, M’ denotes all matchable pairs of asks
and bids at time-slot £. At this time-slot, the total quan-
tity of matchable bids with the seller i’s ask éf is equal to
Z(é;‘,é;)eMt qf. At the same time-slot, for each buyer j, the
total matchable asks’ quantity is equal to Z(ef, , é;) oMt qf,.
The arrival time and the departure time for the seller i
at time-slot ¢ within period p are @/ and 47, respectively.
The seller 7’s slack time in time ¢’ is represented by d — ¢’
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in which the offered VMs will be wasted if they are not
traded after the departure time. To define the overall sta-
tus of each ask in each time-slot, we define the seller’s ask
satisfiability in time-slot ¢ in Definition 6.

Definition 6 (Seller’s ask satisfiability) : The satisfiabil-
ity of seller’s i’s ask at time-slot t is calculated as follows:

t
ai(ét) = Z ﬁ (5)
(bt )emae N (B e %

In Eq. 5, the numerator denotes the total buyers’ bids
that exist in the market and are matchable with the ask
él-t of seller i in time-slot ¢. The denominator represents
the total available quantity of sellers’ asks in the market
that are matchable with buyer ;s bid at the same time-
slot. If the result of the fraction is bigger than 1, the
demand quantity is greater than the supply. This con-
dition increases the competition among the buyers for
receiving their needed services. On the other hand, if the
result of the fraction is less than 1, the supply quantity
is greater than the demand, which increases the competi-
tion among the sellers to sell their services. For instance,
if the total quantity of the market demand is 100 while
the total number of available VMs is 20, the result of
the fraction is 100/20 = 5.0, which means that for each
requested VM, there is 0.2 available VM. In this case, the
competition is among the buyers to obtain their needs.
Similarly, if the total quantity of the market demand is 10
VMs while the total number of available VMs is 20, the
result of the fraction is 10/20 = 0.5, which means that for
each VM request, there are 2 available VMs. In this case,
the competition is among the sellers to sell their available
VMs.

In short, o; represents the overall asks’ conditions in
each time-slot and demonstrates how safe or critical any
ask’s condition is. The bigger o; provides higher satis-
faction for the sellers, whereas the smaller o; brings less
satisfaction to the sellers. Apart from this important fac-
tor, we should take the time limit into account, as when
we get closer to the departure time, the chances of find-
ing an appropriate match decrease and the possibility
of trade failure increases. Definition 7 combines sellers’
satisfaction and time-criticality features.

Definition 7 (Seller’s ask criticality) : The criticality
factor for seller i’s ask at time-slot t within period p is
calculated as follows:

CACRES !
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In Eq. 6, seller /s ask satisfiability and slack time
are located in the denominator. When the satisfiability
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becomes smaller and the ¢ becomes closer to the depar-
ture time, the denominator decreases and the whole frac-
tion, which is the ask criticality, increases. In this case,
a mechanism should be defined to enhance the trade
possibility by increasing the ask’s priority for the trade.

Similarly, in the next two definitions, we will discuss
buyer’s bid satisfiability and buyer’s bid criticality.

At time-slot ¢, the total quantity of matchable asks with

P s 1 Af ¢ t
the buyer j’s bid 6; is equal to ) éfvéf) et i At the same

time-slot, for each seller i, the total matchable bids’ quan-
tity is equal to Z(ét é‘)eMt q]ﬁ. The arrival time and the
iy

departure time for the buyer j at time-slot ¢ within period
p are af and df , respectively. Buyer j’s slack time in time ¢’

is represented by df — ¢/, and it is mandatory to receive the
requested VMs before the departure time to accomplish
the required tasks. To define the overall status of each bid
in each time-slot, we define the buyer’s bid satisfiability in
time-slot ¢ in Definition 8.

Definition 8 (Buyer’s bid satisfiability) : The satisfiabil-
ity of buyer j’s bid at time-slot t is calculated as follows:

t
g =Y |e—t—p " (7)
(éft'é/t)eMt (‘[ ’Q/S)GMt /

In Eq. 7, the numerator denotes the total sellers” asks
that exist in the market and is matchable with the bid éf
of buyer j in time-slot ¢. The denominator represents the
total available quantity of buyers’ bids in the market that
are matchable with seller i’s ask at the same time-slot. If
the result of the fraction is bigger than 1, it represents that
the supply quantity is more than the demand. This situ-
ation increases the competition among the sellers to sell
their services. On the other hand, if the result of the frac-
tion is less than 1, the demand quantity is greater than the
available services. This condition increases the competi-
tion among the buyers to receive their needed services.
For instance, if the total number of available VMs is 50
while the total quantity of the market demand is 10, the
result of the fraction is 50/10 = 5.0, which means that
for each requested VM, there are 5 available VMs. In this
case, the competition is among the sellers for selling their
available VMs. Similarly, if the total number of available
VMs is 50 while the total quantity of the market demand is
100 VMs, the result of the fraction is 50/100 = 0.5, which
means that for each VM request, there is 0.5 available VM.
In this case, the competition is among the buyers to obtain
their needs.

In short, o; represents the overall bids’ conditions in
each time-slot and demonstrates how safe or critical any
bid’s condition is. The bigger o; has a higher satisfaction
for buyers, whereas the smaller o; brings less satisfaction
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to buyers. Apart from this important factor, we should
consider the time limit, as when we get closer to the depar-
ture time, the chances of finding an appropriate match
decrease and the possibility of trade failure increases.
Definition 9 combines buyers’ satisfaction and the time-
criticality features.

Definition 9 (Buyer’s bid criticality) : The criticality
factor for buyer j’s bid at time-slot t within period p is
calculated as follows:

E) 0

In Eq. 8, buyer j's bid satisfiability and slack time
are located in the denominator. When the satisfiability
becomes smaller, and the ¢ becomes closer to the depar-
ture time, the denominator decreases, and the whole frac-
tion, which is the bid criticality, increases. In this case,
a mechanism should be defined to enhance the trade
possibility by increasing the bid’s priority for the trade.

In price-based allocation mechanisms, the priority in
matching bids and asks is to pair the higher bids with
lower asks. To implement this strategy, we can sort the
negative asks’ valuation, —7, and the negative reciprocal
of bids’ valuation, —1.0/ f/]t., both in descending order, and
pair them in a sequence. In our proposed allocation mech-
anism, the satisfiability and the criticality define the ask’s
and bid’s priority for matching, which significantly change
the whole allocation and pricing mechanism.

Figure 1 depicts the overall PB-DODAM allocation
scheme and the relationship among service providers
(sellers), service users (buyers), and an auctioneer in an
IaaS secondary market. As shown in the figure, there is
a number of asks that start from 0; = (v1,41,4a1,d1) to
0; = (vi,qi,ai,d;) and also a number of bids which start
from 9{ = (v;,q;,a;,d;) to 0/./ = <v//., q},a},d}). Each of
these asks and bids arrives to and departs from the auc-
tion in different times at time-slot ¢ within period p. Some
of these asks or bids may arrive earlier and depart sooner
than the others, while some asks have joined later, or some
bids have more time to fulfill their needs. This variation
defines a different criticality for each attended agent and
shows which ones need to be paired as quickly as possi-
ble. Moreover, it represents which agents can defer and
wait for potentially better matches. The battery sign near
each agent depicts the time-criticality, and if it has more
battery bars in green, it means there is more time to wait
for better deals. Less battery bars imply that the agent has
an urgent situation to find its match, and if it cannot find
the match, it will be perished. Our proposed mechanism
wants to consider the perishable and priority-based nature
of cloud resources or services in IaaS secondary markets

LACRES
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to increase the number of successful trades. This will lead
to an increase in the overall utility and profitability of the
system.

This conceptual view is formulated in Algorithms 1
and 2, by applying the defined satisfiablity and criticality
concepts.

Algorithm 1 Ask’s and Bid’s Priority Determination
Input Stage: Set of active asks and bids, satisfiability
threshold (1)

Output Stage: Prioritized asks and bids based on
agents’ statisfiability

1: Adding arriving asks and bids at time-slot ¢ in period p
to the group of sellers (S), and buyers, (B), respectively
and removing asks and bids that depart at the same
time

2: for each seller i do

3 Calculating o; as the ask /s satisfiability

4 if o; < 7 then

5

6

7

Ask(i)'sPriority < ¢ (%)
else
Ask(i)'sPriority < —!
8: end for
9: for each buyer j do
10: Calculating o; as the bid ;s satisfiability
11: if o; < 7 then

12: Bid(j)'sPriority < ¢ )
13: else

14: Bid(j)'sPriority <= —1.0/V]
15: end for

Ask’s and bid’s priority algorithm description
The following part defines the steps of Algorithm 1, Ask’s
and Bid’s Priority Algorithm in more details:

Step 1: All agents’ asks and bids are received and clas-
sified into the seller or buyer group in every time-slot
while removing the departed asks and bids in the same
time-slot.

Step 2: The satisfiability for every seller in every time-
slot is calculated. If the satisfiability of seller i is less than a
defined threshold, a priority will be assigned to the seller
based on the calculated criticality value. Otherwise, the
seller’s status is not critical, so noncritical asks are sepa-
rated, and the negative of the original valuation is assigned
to them as their priority.

Step 3: Similarly, the satisfiability for every buyer is cal-
culated in every time-slot. If the satisfiability of buyer j
is less than a defined threshold, priority will be assigned
to the buyer based on the calculated criticality value.
Otherwise, the buyer’s status is not critical, so the noncrit-
ical bids are separated, and the negative reciprocal of the
original valuation is assigned to them as their priority.
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Fig. 1 Online dynamic DA in an laa$ secondary market considering time-criticality

In steps 2 and 3, if the agents’ asks and bids are in
critical status, their priority will be calculated accord-
ingly. Otherwise, for noncritical asks and bids, we follow
the same price-based allocation mechanism. We define
the satisfiability threshold, 7, to distinguish between the
critical and noncritical cases. An appropriate value for
the satisfiability threshold is obtained through a numer-
ous number of experiments using a multi-agent simu-
lation environment that will be discussed thoroughly in
“Experimental results” section.

In the next phase, which is the priority-based allocation
algorithm, we start by sorting the asks and bids based on
their calculated priorities to match them.

Priority-based allocation algorithm description
The following part defines the steps of Algorithm 2,
Priority-based Allocation Algorithm, in more details:

Step 1: First, sort the prioritized asks in descending
order based on their calculated priority precedence which
is explained in Algorithm 1.

Step 2: Pick the first ask in the list that has the highest
priority.

Step 3: Find all the machable bids in the bids list and
update their priority.

Step 4: Sort these matchable bids based on their
updated priorities in descending order.

Algorithm 2 Priority-based Allocation Mechanism

Input Stage: Prioritized asks and bids based on
agents’ satisfiability
Output Stage: VMs allocation based on prioritized
asks and bids

1: Sorting asks in descending order based on their
updated priorities

2: for each seller i’s ask in time-slot ¢ do

Find all matchable buyers’ bids with seller s ask

and update their priorities

4 Sort the machable bids based on their updated
priorities in descending order

5: if sorted machable bids # null then

pair ask i and highest priority bid j

7: remove ask i and bid j from the sorted asks and
bids lists
8: else

move ask i to the unsatisfied list and move on
to the next ask
10: end for

Step 5: If the sorted matchable bids collection is not
null, ask i is paired with the highest priority bid j, and
both matched ask and bid are removed from the list. Then
the next ask from the list should be selected to repeat
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the whole process. If there is no matchable bid for the
current ask, the ask should be moved to the unsatisfied
list, and the next ask should be selected to repeat the
aforementioned process.

Step 6: Step 1 to step 5 are repeated until no ask remains
without matchable bids.

From a broader perspective, the price-based allocation
mechanism is a subsidiary of our proposed approach
for the case when the satisfiability threshold is set to
0. In other words, based on the Algorithm 1, if the
satisfiability threshold is equal to 0, any bid or ask would
be greater than zero and time-criticality is not considered.
On the other hand, if we set the satisfiability threshold
equal to oo, all asks’ and bids’ conditions would be con-
sidered as critical and the allocation mechanism would
become a pure criticality-based mechanism.

Although the criticality-based allocation algorithm
focuses on increasing the successful trade rate and
improving the allocation efficiency, achieving less trade
failures could potentially improve the overall surplus.
In other words, the main goal of the proposed algo-
rithm is to find a proper resource allocation mechanism
that increases the efficiency and decreases the wasted
resources or services. As a result, increasing the suc-
cessful trade rate improves the overall social welfare.
In comparison to the price-based approach, which only
focuses on increasing economic productivity, our pro-
posed criticality-based mechanism is more sustainable in
terms of higher resource allocation efficiency. At the same
time, it satisfies the rest of the features of online double
auction mechanisms. In the following theorems, we prove
that our priority-based allocation mechanism satisfies the
individual rationality, budget-balancing, and truthfulness
features of online double auction mechanisms.

Theorem 1 The proposed PB-DODAM mechanism is
truthful.

Proof We provide a sketch of the proof for the truth-
fulness of the PB-DODAM mechanism. Self-interested
entities allow themselves to report their types with dis-
honesty to gain as much interest as possible. Among the
four parameters of each agent’s type, misreporting the
arrival and departure time has no use. As the arrival time
a; for the agents is the earliest time that they are willing
to trade, reporting an earlier time has no logic. Reporting
a later arrival time (a] > 4;), as well as the earlier depar-
ture time (d; < d;), decreases the chances of matching
pairs and increases the possibility of trade failures. More-
over, reporting later departure times brings no benefit to
sellers and buyers, and jeopardizes the required finishing
time, so buyers may receive their VMs when they cannot
finish their designated tasks. Requesting more quantity
(¢; > q;) from buyers is irrational as they should pay more
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for unwanted services and demanding fewer resources
endangers their task completion. From the sellers’ side,
offering more than available resources is not possible as
the sold VMs need to immediately be delivered to ser-
vice users. Offering fewer resources with the intention
of creating false deficiencies to raise the price requires
a high degree of knowledge of current markets. More-
over, it increases the computational complexity to find
the exact amount that should be offered to maximize the
profit. Even if we could find this optimal point, not sell-
ing to the full capacity is equal to wasting the resources
and consumed electricity. In terms of valuation, there is no
rational if a service user reports their valuation more than
what they willingly want to pay (v; > v;), as this decreases
their profit. On the other hand, reporting the service user’s
valuation less than their actual dedicated budget decreases
their matching chances and causes them to lose the trade.
Similarly, if a seller asks for more than what they genuinely
expect to receive, they may lose the trade. Based on the
perishable nature of cloud resources and services, sellers
can go below their initial valuation when they come closer
to their departure time. This strategy can increase their
chances for successful trades. The reason for this is if they
do not sell their VMs, they will perish for that time-slot.
For this reason, we do not consider reporting lower val-
uation from the service providers’ side as misreporting,
but instead a strategy to increase their successful trades.
Therefore, it is reasonable that no agent misreports their
type for strategic behaviours. The only modification that
can happen is on service providers’ valuation to not lose
the trade and the salvage price of their VMs, which is not
considered as misreporting. O

Theorem 2 The proposed PB-DODAM mechanism is
incentive-compatible and individually rational.

Proof PB-DODAM mechanism is a combination of P
and Q, where the payment rule, P, is a real-valued func-
tion from the buyer to the seller on [0, 1]? with v; and
vo values. The allocation rule, Q, is a mapping between
[0,1]% and [0,1]. The value at (vq, v2) defines the prob-
ability of the trade. If the values of P and Q result from
a Bayesian game with a pair of Bayesian-Nash parity
strategies, then PB-DODAM mechanism (P, Q) can be
considered incentive-compatible. PB-DODAM applies the
following k-double auction allocation rule which results in
equilibrium (P, Q'):

kP'(v2) + (1 — k)Q'(v1) if P'(v2) = Q' (v1)
0 otherwise,

P(vi,v) = {
)

and
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LifP'(v2) = Q'(n1)

0 otherwise, (10)

Qvy,v2) = {

The type v; seller’s interim expected utility can be

calculated for an incentive-compatible double auction
mechanism (P, Q) as follows:

1
Ui(vi;P,Q) = /0 [P(v1,v2) — v1QWv1,v2)] dF2(v2)

(11)

The sellers’ ex-ante expected utility is calculated as

follows:
1
u,(P,Q = /(; Ur(vi; P, Q)dF1(v1) (12)

The probability of a type v; seller’s trade is calculated as

follows:
1
Qi) = /0 Q(v1,v2)dF2(v2) (13)

Buyers can benefit from similar formulas. We can pre-
cisely calculate a type v; trader’s interim expected util-
ity from this equilibrium as U;(v; P, Q) = U;(v; P, Q)
since any combination of P’ and Q' in the k-double auc-
tion implements an incentive-compatible double auction
mechanism (P,Q) as in Egs. 9 and 10. U;(P’, Q) and
Q;(vi; P, Q) can be calculated in a similar manner.

When foralli € 1,2 and all v; €[0, 1], U;(vi; P,Q) > 0, a
double auction mechanism (P, Q) is considered individu-
ally rational. In equilibrium, each trader’s strategy implies
that a loss never occurs; thus, the auction mechanisms
outlined by k-double auction are considered individu-
ally rational [42]. Therefore, the proposed PB-DODAM is
both incentive-compatible and individually rational, and
the defined PB-DODAM mechanism is thus incentive
feasible. O

Receiving higher chances of trading for the agents who
have a shorter trading time-frame is the main strategy
of the criticality-based allocation mechanism. In other
words, the criticality-based allocation mechanism consid-
ers a higher trading priority for the asks/bids that have
a shorter trading period. This approach can be misused
by strategic agents if they divide their current bids into
smaller ones with shorter time-frames to increase their
priority. Although these kinds of misbehaviours could be
easily prevented by charging entry fees for bids and asks,
it is assumed that agents do not use such strategies.

Realistically, not all receiving asks and bids by the auc-
tioneer have the same level of importance or criticality.
Therefore, there is a need to define a defer time to check
if there is any higher priority ask/bid with greater urgency.
Moreover, there could be new asks or bids that could be
a better fit and bring a higher social surplus. Finding an
appropriate defer time is a complex process due to the
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following reasons. On the one hand, waiting for more
incoming asks and bids that are in critical condition or of
higher priority can enhance the probability of finding bet-
ter matches. On the other hand, postponing the matching
process could cause opportunity losses, and as a result,
increases trade failures. In short, finding the right waiting
time for matching asks and bids is a complex process, and
Definition 10 tries to clarify this process by defining the
defer rate parameter.

Definition 10 (Defer rate) : Eq. 14 represents the defer
rate of agent i's ask or bid at time-slot t within period p.
t —da
£—d

&) = (14)

In Eq. 14, the denominator is agent i’s departure minus
agent i’s arrival within period p which is constant. The
numerator is ¢ minus agent i’s arrival, where ¢’ is equal
to the real time passage and increases every minute. Since
the denominator is a constant value, as time passes and ¢’
increases, the total fraction increases as well.

The defer rate definition adds a new constraint to
our priority-based allocation algorithm by which every
matchable ask and bid can be traded only if their defer
times are greater than or equal to &, which is the defer
rate threshold. The functionality of ¢ is to provide enough
waiting time to receive possible tasks with higher prior-
ities and to find potentially better deals in our proposed
mechanism. On the other hand, large values for the defer
time threshold result in an increase in untraded matchable
asks and bids which degrades the achieved performance
and social welfare. This is why finding an appropriate
€ is not a trivial task, and the value that we proposed
for ¢ has come from an extensive number of multi-agent
simulations experiments.

Algorithm 3 is the modified version of our priority-
based allocation algorithm that considers the defer rate
threshold as a new constraint to find proper matches.

Priority-based allocation with defer rate description
This modified version of the priority-based allocation
algorithm provides the opportunity to defer the match-
ing process to accept high-priority asks/bids that could
join the system during the defer time. At the same time,
choosing an appropriate threshold could potentially result
in finding better matches. The first few steps of the cur-
rent algorithm are similar to Algorithm 2. On line 5 of the
current algorithm, it is verified that the sorted matchable
bids collection is not null, and the defer rate of both asks
and bids is greater than or equal to ¢.

The goal of the modified mechanism is to provide
enough waiting time to receive and accept potentially
high-priority tasks. It also considers the departure time
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Algorithm 3 Priority-based Allocation with Defer Rate

Input Stage: Prioritized asks and bids based on
agents’ satisfiability
Output Stage: VMs allocation based on prioritized
asks and bids, considering ¢ threshold

1: Sort asks in descending order based on their updated
priorities

2: for each seller /s ask in time-slot ¢ do

3 Find all matchable buyers’ bids with seller i’s ask
and update their priorities

4 Sort the machable bids based on their updated
priorities in descending order

5: if (sorted machable bids # null) AND (ei.j () > ¢)
AND (e]’«)(t) > ¢) then

pair ask i and highest priority bid j

: remove ask i and bid j from the sorted asks and
bids lists

8: else

9: move ask i to the unsatisfied list and move on
to the next ask

10: end for

to avoid trade failures. Avoiding trade failures ensures
no drop in achieved resource allocation and overall util-
ity. Adding the defer rate to the proposed basic algo-
rithm brings our simulation environment remarkably
closer to the real conditions of cloud ecosystems in which
not all the tasks have equal priority. The enhancement
distinguishes our research from similar state-of-the-art
mechanisms.

Price-scheduling mechanisms

Providing an appropriate price-scheduling mechanism
is an important key to success for economic mod-
els in cloud ecosystems. No double auction mechanism
can satisfy all double auction properties, ie. individ-
ual rationality, budget-balancing, truthfulness, and com-
putational efficiency [42]. In most studies, appropriate
price-scheduling mechanisms satisfy most of the above-
mentioned aspects while keeping the rest at acceptable
levels. price-scheduling mechanisms are important to
avoid agents’ strategic movements by taking the truthful-
ness into their consideration. This is a mandatory factor
for market stability and agents’ trade security. Moreover,
pricing mechanisms can improve individual rationality,
which motivates the agents to take part in the business
based on their received benefits. Furthermore, individ-
ual rationality can increase the efficiency of the resource
allocation by encouraging the participants to trade as
many resources or services as possible. Our proposed
pricing mechanism requires an increase in allocation effi-
ciency and prevent strategic agents’ behaviours to min-
imize trade failures. To guarantee that the auctioneer
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does not take the short in position role, our proposed
mechanism should be a strong balanced budget in which
the auctioneer neither makes nor loses any benefit in the
trades. The proposed pricing mechanism needs to fulfill
the aforementioned features.

There is a number of price-scheduling mechanisms
available in the market for double auction environments,
such as Vickrey, McAfee, and k-double auction (k-DA)
[18]. Among these price-scheduling mechanisms, k-DA
guarantees the individual rationality, balanced budget,
and truthfulness while providing a reasonable level of
efficiency. As the k-DA’s features are aligned with our pro-
posed priority-based double auction mechanism, we have
modified k-DA’s price-scheduling system to be tailored to
our needs.

k-DA’s pricing mechanism is defined as follows:

Definition 11 (k-Double Auction (k-DA)) : Consider-
ing m number of sellers and n number of buyers which are
matchable, a,, is the highest valuation among the matched
asks and b, is the lowest valuation among the matched
bids. The market price, ¢ (t), at time-slot t within period p
is calculated according to Eq. 15:

¢ @) =(1 — K)ay + kb, (15)

In Eq. 15, k is a variable between 0 and 1. It is proven
that when the number of asks and bids increases, the k-DA
pricing mechanism converges towards strategy-proofness
[42]. Strategy-proofness is one of the main properties in
DA truthfulness that provides the higher efficiency and
lower trade failures, which are the main focus of the
current paper.

In the competitive market of cloud ecosystems, ser-
vice providers do not have motivation to exaggerate their
actual valuation Vf to increase the market price. Increas-
ing the market price risks the sellers’ matching possi-
bilities. On the other hand, underestimating their true
valuation would decrease their benefits as our proposed
allocation mechanism reduces the trade loss potentials,
and thus it is needless to lower down the actual valuation.
Due to the highly competitive cloud service markets, the
distance between providers’ asks and users’ bids is quite
small. As the users’ tasks are often time-critical, there is
no incentive to decrease the bidding valuation le as it can
jeopardize their trades and miss their deadlines.

The way that agents propose their bids and reveal their
types is a part of the bidding strategies. In any complex
market such as cloud ecosystems, we can apply a lim-
ited number of bidding strategies to obtain experimental
analyses. In the current research, we present a number of
bidding strategies to simulate the various types of sellers
and buyers in diverse market circumstances. To this end,
the bidding strategies that are considered are built upon
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common human characteristics in the face of priority-
based services. A number of agents’ bidding strategies are
studied in the following part.

Agents’ bidding strategies
The true valuation of seller i and buyer j are represented
by vf’ and V}p , respectively, while the reported valuation of

seller i and buyer j are denoted by f/f’ and f/]” , respectively.

When the value of f/f is considerably greater than the value
of Vf and the value of f/lp is considerably lower than the
value of 1/]” , the agents are highly motivated to increase the
number of successful trades. If the values of s are slightly
different from the values of vs, the agents only act for the
trades that are the most beneficial to them, which is also
known as aggressive bidding strategy. Aggressive bidding
strategy inevitably increases the trade failure rates.

The followings are the most common bidding strategies
in current markets:

(i) Modest strategy (MODS):
Modest strategy is a common bidding mechanism for
perishable goods in spot markets, which technically
converts double-sided auctions into one-sided
auctions. The reported valuation of sellers in this
approach would be always zero, as follows:

=00 (16)

In this strategy sellers do not participate in reporting
their valuations and only buyers offer their bids.

(ii) Truthful strategy (TS):
In this strategy, both sellers and buyers report their
actual asks and bids truthfully. In Eq. 17, seller i
reports its valuation in time-slot ¢ within period p as
follows:

(17)

In Eq. 18, buyer j reports its valuation in time-slot ¢
within period p as follows:
=

(iii) Monotonous strategy (MONOS):
In this strategy, sellers and buyers, after entering the
auction at arrival time, adjust their valuation report
over time, as well as considering the remaining time.
Seller i’s valuation is reported at time-slot ¢ within
period p as follows:

(18)

. -
V=10 +5)d1; >

i %

(19)

Buyer j’s valuation is reported at time-slot ¢ within
period p as follows:

& -t
vj:vj.’<1.0—af§ af) (20)
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In Egs. 19 and 20, we consider § to be a parameter to
manage the aggressiveness of the sellers’ and the
buyers’ bidding attitude. When § has a higher value,
the agents are greedier for trading, whereas when §
has a lower value, the agents have more tendency for
aggressive tradings. As we get closer to the departure
time, the seller i’s reported valuation tends uniformly
from vf (1.0 4 8) to 0.0. Similarly, as we get closer to
the departure time, the buyer j’s reported valuation
tends uniformly from Vf(l.O —8) to Vf This is one of
the most common dynamic pricing strategies that are
extensively used in the revenue management fields.
(iv) Aggressive strategy (AGS):
The AGS is technically a randomized version of the
MONOS strategy. In AGS, when the trade failure
risk is low, the agents attempt to achieve a higher
social welfare, and when the offers get closer to the
departure time, the agents ignore the profit and focus
more on the successful trades. The seller i’s valuation
is reported at time-slot ¢ within period p as follows:

dP
v—mnd(vp(IO—f—S) ap

l 4

v”(l 0+ 8))

(21)

The buyer j’s valuation is reported at time-slot ¢
within period p as follows:

4

d. —t
V= rand <vj’ 10-38),¥ (1.0—56[% —aj’))

j
(22)

In Egs. 21 and 22, a rand(x, y) function is used which
provides a random number between x and y. The
seller i’s reported valuation starts with Vf] (1.0+9)
and ends with a random value within

[0.0, Vf(l.O + 8)] range. The buyer j’s reported
valuation starts with Vf (1.0 — 8) and ends with a

random value within [Vf(l.o —9), V/p] range.

These are the dominant bidding strategies that are widely
used in the market and we have utilized the TS in our
multi-agent simulation mechanisms to evaluate our pro-
posed priority-based double auction mechanism.

With the proposed allocation approach, price-
scheduling system and the agents’ bidding strategies, we
promote a priority-based online double auction mecha-
nism that considers time-criticality of asks and bids and
perishable nature of the offered services. As the proposed
approach lowers the unsuccessful trades, it provides a
higher resource allocation efficiency and a higher social
welfare for the participants. Moreover, based on the mod-
ified k-DA price-scheduling mechanisms that is used for
our proposed model, the auctioneer creates neither profit
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nor loss that makes our proposed mechanism a strong
balanced budget. The strong balanced budget prevents
the short in position role for the auctioneer and increases
the incentive compatibility of the system. Our proposed
algorithms are evaluated using a multi-agent simulation
method in the next section.

Experimental results

We have examined our model using a simulation environ-
ment to implement a number of scenarios in a repeatable
controlled testbed. The experiments consume a reason-
able amount of time and close-to-zero cost. Considering
real JaaS secondary markets that will serve ground for the
auction, we have tried our best to define a variety of con-
ditions with realistic data. These conditions and realistic
data allow the experimental results to represent the real
outcomes.

Experiment setup

In our simulation environment, there are 10 service
providers as sellers and 10 service users as buyers that par-
ticipate in the market in 5 separate time-slots, and every
time-slot lasts for 30 min. Some cloud providers on the
market, such as Amazon, offer their services on the hourly
basis. In their case, it makes no difference how many min-
utes of the hour does the user require. In our approach, we
define the time-slot as the 30 min period. In fact, chang-
ing the length of this segment to any shorter or longer
value does not impact the generality of the model. In every
time-slot, sellers and buyers attend the auction in random
arrival times offering their asks and bids, respectively, to
find their match and start trading. These agents leave the
auction after staying for a random number of minutes in
the current time-slot, not exceeding the 30-min time-slot
window. In our proposed model, cloud service providers
in secondary markets supply VMs as the cloud trading
units in which every cloud service user could demand a
number of them. In every time-slot, a trade happens when
a seller’s ask and a buyer’s bid satisfy the matching con-
ditions. The matching conditions are satisfied when the
quantity of VMs offered by a service provider is greater
than or equal to a service user’s demand, and the ser-
vice provider’s ask is less than or equal to the service
user’s bid. Moreover, an ask and a bid should have time
overlap during their presence in the current time-slot to
be able to trade. Service providers and service users can
freely alter their asks’ and bids’ valuation according to
their bidding strategies. At the end of each time-slot, the
market is cleared, and there is no overlap between these
time-slots.

In the classical price-based approach, pairing up the
lower asks and higher bids is the only concern, and the
priority and time-criticality of the tasks are taken for
granted. In our proposed model, the time-criticality of
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cloud offered services is of particular importance and
forms the core component of our research. Based on over-
all condition of every ask and bid in each time-slot, we
calculate the ask satisfiability and bid satisfiability, respec-
tively. In every time-slot, if the demand for an ask is more
than the total supplied VMs, the ask benefits from a higher
satisfiability, compared to a situation when the demand is
less than the total supplied VMs. In every time-slot, if the
ask satisfiability is less than a certain threshold, it is con-
sidered that the ask is in a critical status and needs to be
given a higher priority. Likewise, in every time-slot, if the
supply for a bid is more than the total demanded VMs, the
bid benefits from a higher satisfiability, compared to the
situation when the supply is less than the total demanded
VMs. In every time-slot, if the bid satisfiability is less than
a certain threshold, it is considered that the bid is in a crit-
ical status and needs to be given a higher priority. This
idea shapes the foundation of our proposed priority-based
double auction mechanism to define whether each ask or
bid has a critical condition or not.

Finding appropriate ask satisfiability threshold (AST)
and bid satisfiability threshold (BST) is not a trivial task
and is of particular importance which directly impacts our
algorithm’s performance. Based on a significant number of
experiments, a range of AST and BST was acquired for our
simulations. Defining a range of AST and BST is neces-
sary to calculate the criticality and subsequently to assign
the task priority. On the basis of the numerous experi-
ments, it was concluded that the range of AST should be
different from the range of BST. To investigate the impact
of these thresholds on our proposed mechanism’s perfor-
mance, 0.0, 0.25, 0.5, 0.75 and 1.0 are tested as AST range
and 0.0, 0.75, 1.5, 2.25 and 3.0 as BST range. To clarify
the comparison between the existing dominant approach
(the classical price-based mechanism) and our proposed
method, we considered AST=0.0 and BST=0.0 for the
classical priced-based mechanism, which in practice will
ignore the time-criticality and perishability conditions.
In every time-slot for each ask and bid, the satisfiability
is calculated (Egs. 5 and 7). Satisfiability threshold can
be considered as the threshold of acceptable and normal
conditions that any value less than that indicates critical
conditions. In every minute in each time-slot if an ask sat-
isfiability is less than the AST, we consider the calculated
ask criticality (Eq. 6) as the ask priority. In this condi-
tion, the ask priority would increase when the time passes
to increase the chances of conducting a successful trade.
Likewise, in every minute in each time-slot, if a bid satis-
fiability is less than the BST, the calculated bid criticality
(Eq. 8) becomes the bid priority. In this case, the bid pri-
ority would increase when the time passes to increase the
chances of conducting a successful trade. Otherwise, if the
ask satisfiability and bid satisfiability are not less than their
designated thresholds, their conditions for the trade are
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considered normal, and the price-based allocation priority
will be used.

To recognize the amount of time that the current asks
and bids can wait for any high-priority or urgent incom-
ing task, we have defined a defer rate range containing
0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45. For
instance, when the defer rate is equal to 0.05, agent i
defers the matching process for 5% of their total pres-
ence in the current time-slot of the auction. By using this
range, it can be understood how long we could wait for
any high-priority task before facing any tangible drop in
the matchibility rate and the overall utility. The outcomes
shown in the following sections are the averages of five
hundred simulation runs for a low-risk trading market and
the same number of runs for a high-risk trading market.
Running the simulation this number of times ensures that
the achieved results are stable and have a low variance.

A brief summary of simulation parameters is mentioned
in Table 2. In the following subsection, we examine two
possible scenarios in common laaS secondary markets
in which perishable or priority-based cloud resources or
services are traded.

Description of scenarios

The low-risk trading market for PB-DODAM mechanism

In a low-risk trading market for our proposed mechanism,
the average sellers’ valuation is lower than the average

Table 2 Simulation parameters

Parameters Value
Number of service providers (Sellers) 10
Number of service users (Users) 10
Number of time-slots (ts) 5
Number of minutes in each time-slot (t) 30

Total simulation time 150 min
Total number of experiments 500 times

Ask Satisfiability Threshold (AST)
Bid Satisfiability Threshold (BST)
Ask satisfiability

Bid satisfiability

Ask criticality

Bid criticality

Ask priority

Bid priority

Defer rate range

Low-risk seller valuation range
Low-risk buyer valuation range
High-risk seller valuation range

High-risk buyer valuation range

0.0,0.25,0.5,0.75,1.0
0.0,0.75,15,2.25,3.0
Calculated for each ts
Calculated for each ts
Calculated for every t
Calculated for every t
Calculated for every t
Calculated for every t
0.0:0.05:045
51020

10to 30

10to 30

10to 30
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buyers’ valuation. This difference increases the match-
ing probability and decreases the risk of trade failure. In
a low-risk trading market, the competition is normally
moderate. In our experiments in a low-risk trading mar-
ket, the sellers’ valuation range is between 5 to 20 financial
units, whereas the buyers’ valuation is ranged between 10
to 30 financial units.

The high-risk trading market for PB-DODAM mechanism

In a high-risk trading market for our proposed mecha-
nism, the average sellers’ valuation is similar to the average
buyers’ valuation. The proximity of the sellers’ and buyers’
valuation negatively impacts the matching probability and
increases the risk of failure. In a high-risk trading mar-
ket, the competition is normally higher than in a low-risk
trading market. In our experiments in a high-risk trading
market, the sellers’ and the buyers’ valuation ranges are
similar and between 10 to 30 financial units.

Figures 2 and 3 illustrate a low-risk trading market and a
high-risk trading market, respectively. Figure 2 represents
that the majority of asks and bids match, whereas in Fig. 3,
almost half of the asks and bids could engage in trade suc-
cessfully. In a low-risk trading market, the trading options
experience less critical conditions, whereas in a high-risk
trading market, when pairing options are diminished, we
move towards more critical conditions.

The purpose of this paper is to investigate the effect of
time-criticality (Eqgs. 6 and 8) and task-priority factors on
the overall matchability and social welfare. To this end, we
need to examine the impact of different AST and BST on
time-criticality and task priority.

In the following parts, we will explain the impact of dif-
ferent ranges of AST and BST in allocation mechanisms
and social welfare evaluations. Moreover, in our research,
we study the impact of different defer rates on our alloca-
tion and social welfare evaluation experiments. Our goal
is to find out the amount of time that the current asks
and bids can wait for any high-priority task without fac-
ing a tangible drop in the overall allocation and utility
performance.

Allocation mechanism evaluation

Matching rate is defined as an index to indicate the
number of successful trades. In Fig. 4, we illustrate the
matching rate in a low-risk trading market scenario using
different ranges for AST and BST. When the AST and
the BST are equal to zero, no ask or bid is considered to
be in a critical condition, and in this case, it falls into a
price-based category. As it is depicted in the graph, the
price-based mechanism (AST = 0 and BST = 0) has the
lowest matching rate, whereas applying the least amount
of thresholds (AST=0.25 and BST = 0.75) at once creates
a leap in the matching rate. Increasing the satisfiability
threshold for both asks and bids increases the matching
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rate as well. As it is illustrated in Fig. 4, the matching
rate values in the last two satisfiability thresholds are
converged.

It can be analyzed that by defining a satisfiability
threshold, the critical asks and bids which perish soon
will receive higher priorities to trade. In this condition,
the matching rate and the number of successful trades

increase, and this proves the proposed idea of the current
paper.

By running an extensive number of simulations, it was
found that in the last two satisfiability thresholds, the
results were very close to each other. Increasing the
satisfiability thresholds will not produce better results. A
hundred of experiments were run to find out the best AST
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and BST to achieve the highest matching rate. In short,
1.0 for the AST and 3.0 for the BST gained the highest
matching rate among all tested values.

Another aspect to be considered in Fig. 4 is the impact
of the defer rate on the matching rate. The defer rate
determines how much the matching process can be
delayed for any urgent or high-priority request without
a noticeable drop in the performance. For all designated
thresholds in the low-risk market scenario, the allocation

mechanism experiences no performance loss, when the
defer rate is equal to 0.05, compared to the case when
the defer rate is equal to zero. Moreover, when the defer
rate is equal to 0.1, an intangible drop would happen in
the matching performance, compared to the zero defer
rate case.

Figure 5 illustrates the matching rate in a high-risk
trading market using different ranges for the AST and the
BST. Similar to Fig. 4, when the satisfiability thresholds

0.52
0.5 ]
3} 0.
g
0.48¢ — —G- _ o 1
-6 _ ..
o Te . B
< ¥ =k ~ .
o 046 Tk O a.. .
? ‘\-*‘\‘ N V D
= - ~_
2044 S @\\"D_ i
= ~
~5 o
‘\ N
‘- o.
042 * D e
—-%-—AST=0.0 BST=0 AN ’S\\
— © —AST=.25 BST=0.75 Sk
04| @ AST=05 BST=15 Tl
AST =0.75BST =2.25
AST =1.0BST = 3.0
038 Il Il Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Defer Rate Threshold
Fig. 5 High-risk matching rate graph




Dibaj et al. Journal of Cloud Computing: Advances, Systems and Applications

are equal to zero, the case falls into a category of price-
based mechanisms, and applying the non-zero thresholds
provides a noticeable difference that can be seen in the
performance of the system. Moreover, like the low-risk
trading market, the matching rate graphs for the last two
thresholds converge. From the defer rate perspective, if
the defer rate is equal to 0.05, there is no drop in the
matching rate efficiency, compared to the case that the
defer rate is equal to zero. In this case, the system can
defer the trading process for high-priority tasks without
any performance loss.

A comparison of the low-risk and the high-risk trad-
ing markets’ graphs shows that regardless of the threshold
factor, the overall success rate of trading in the high-risk
markets is considerably lower than the low-risk markets.
The reason for that is in the high-risk markets, the asks’
and the bids’ valuations are close to each other. In this
case, the competition is high, and so are the chances of
the trade failures. Regardless of the AST and the BST
ranges and the defer rate range, in terms of matching rate,
the low-risk trading markets perform tremendously bet-
ter than the high-risk ones. In terms of the defer rate,
both low-risk and high-risk trading markets have the same
performance in the range of 0 and 0.05, and no drop is
experienced in them. Both low-risk and high-risk mar-
kets have relatively similar behaviour when the defer rate
is between 0.05 to 0.1, while the low-risk market shows
a slightly better performance in terms of the matching
rate. The reason for this is when the competition is low,
the matching process can be deferred for slightly longer,
compared to the case when the competition is high.
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In addition to the matching rate increment, which is
the main purpose of the current paper, it is expected
that the number of successful trades increases, and conse-
quently, the overall social welfare improves. In the follow-
ing section, the social welfare will be evaluated based on
the sellers, the buyers and the overall social welfare in both
low-risk and high-risk markets. The illustrated graphs are
the result of averaging five hundred times of simulation
runs for the low-risk and the high-risk market scenarios.

Social welfare evaluation

Social welfare evaluation is one of the most common met-
rics to evaluate the profitability of a system. It can be
inferred that there is a direct relationship between the
resource allocation and the financial outcome of a system.
First, we examine the social welfare in a low-risk trading
market to measure the financial aspects of our proposed
mechanism. For this purpose, we will examine the per-
formance of the sellers, the buyers, and the total utility
separately. We use the k-DA price-scheduling mechanism
and the TS bidding strategy to calculate the utility of the
sellers, the buyers, and the overall social welfare.

Figures 6 and 7 illustrate the sellers’ utility and the
buyers’ utility performance in a low-risk trading market.
When the AST and the BST are equal to zero, we expe-
rience the price-based mechanism which has the lowest
utility for both sellers and buyers. Applying the least
amount of thresholds makes a significant difference in the
efficiency, as illustrated in Figs. 6 and 7. In these figures,
the two highest thresholds result in the maximum amount
of benefits to sellers and buyers. The achieved utility of the
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last two thresholds are close to each other, and any fur-
ther increment will bring no more benefits to the engaged
agents. If we consider the time-criticality of the current
asks and bids and prioritize the asks and bids that are close
to expiration, we will increase the trade chances. This can
lead to more successful trades and consequently brings
more profit to participating agents, as illustrated in Figs. 6
and 7.

Figure 8 is the summation of all participating agents’
utilities in a low-risk trading market and shows how well
our mechanism works in terms of profitability by applying
appropriate ASTs and BSTs.

In the following paragraphs, we examine the social
welfare in a high-risk trading market to measure the
sellers, the buyers and the overall social welfare in separate
scenarios.
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Figures 9 and 10 illustrate the sellers’ and the buyers’
utility performance in a high-risk market. Applying the
minimum AST and BST to distinguish normal cases
and critical ones drastically improves sellers’ and buyers’
utility, compared to the price-based mechanism where
the AST and the BST are equal to zero. The two max-
imum AST and BST results are close to each other
and bring the highest social welfare to the participating
agents.

Figure 11 is the summation of all participating agents’
utilities in a high-risk trading market and shows how well
our mechanism works in terms of financial outcome by
applying appropriate ASTs and BSTs.

In summary, in low-risk trading markets, the sellers’ val-
uations are relatively lower than the buyers’ valuations.
Hence, the competition and consequently, the chances of
trade failures are relatively low. Unlike low-risk trading
markets, in high-risk markets, the sellers’ and the buyers’
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Fig. 11 High-risk total utility graph
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valuations are close to each other, and as a result, the com-
petition and the chances of trade failure are comparatively
high. This leads to lower social welfare, compared to the
low-risk trading markets.

Regardless of the trading market types, the more critical
tasks are considered and given higher priority, the more
successful trades and social welfare are achieved. Based
on the illustrated results, it can be asserted that in both
low-risk and high-risk trading markets, considering the
AST and the BST to prioritize the critical tasks drastically
increases the matching rate and the overall social welfare
of the system.

Conclusions

In conventional double auction mechanisms, the priority
and the time constraints of cloud tasks are not addressed
well. This causes some resources to perish and lost due
to the time constraints in the IaaS secondary markets. In
convectional double auction mechanisms, the priority and
time constraints of cloud tasks are not addressed well.
This causes some resources to be perished and lost due
to time constraints. In this paper, by considering the per-
ishability and time-criticality of the cloud resources and
services in the IaaS secondary markets, a priority-based
dynamic online double auction mechanism was proposed.
In this mechanism, the time-criticality and the availability
of cloud resources and requests determined the match-
ing priority for the agents’ asks and bids. We investigated
the validity of our proposed mechanism in both low-risk
and high-risk trading market scenarios by conducting a
tremendous number of simulation runs. In this regard,

it was found that setting appropriate thresholds for ask
satisfiability and bid satisfiability increases the trading
chances for critical tasks. Considering time-critical tasks
increases the matching rate and accordingly improves
the overall social welfare. In our proposed model, the
performance of the system in the allocation and social
welfare domains are significantly improved over the clas-
sical price-based approach. Moreover, we defined a defer
rate to explore the amount of time that the matching
process can be delayed to accommodate any incoming
high-priority request before facing a tangible drop in the
matchibility and the overall utility.

In this research, a k-double auction price-scheduling
mechanism was applied, and future work can explore
the other price-scheduling models to enhance our cur-
rent mechanism. Moreover, the truthful strategy was the
main bidding strategy in the current research, and future
work can consider the impact of applying the other bid-
ding strategies. The current paper proposed a multi-
unit priority-based double auction mechanism for cloud
ecosystems, and in future work, priority-based combina-
torial double auction models can explore more detailed
cloud components. Moreover, future studies could inves-
tigate different priority classifications to enhance the cur-
rent priority-based double auction mechanism.
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