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Abstract

Workflow scheduling involves mapping large tasks onto cloud resources to improve scheduling efficiency. This has
attracted the interest of many researchers, who devoted their time and resources to improve the performance of
scheduling in cloud computing. However, scientific workflows are big data applications, hence the executions are
expensive and time consuming. In order to address this issue, we have extended our previous work "Cost Optimised
Heuristic Algorithm (COHA)" and presented a novel workflow scheduling algorithm named Multi-Objective Workflow
Optimization Strategy (MOWOS) to jointly reduce execution cost and execution makespan. MOWOS employs tasks
splitting mechanism to split large tasks into sub-tasks to reduce their scheduling length. Moreover, two new
algorithms called MaxVM selection and MinVM selection are presented in MOWOS for task allocations. The design
purpose of MOWOS is to enable all tasks to successfully meet their deadlines at a reduced time and budget. We have
carefully tested the performance of MOWOS with a list of workflow inputs. The simulation results have demonstrated
that MOWOS can effectively perform VM allocation and deployment, and well handle incoming streaming tasks with a

to meet their deadlines.

random arriving rate. The performance of the proposed algorithm increases significantly in large and extra-large
workflow tasks than in small and medium workflow tasks when compared to the state-of-art work. It can greatly
reduce cost by 8%, minimize makespan by 10% and improve resource utilization by 53%, while also allowing all tasks
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Introduction

Cloud computing, a multipurpose and high-performance
internet-based computing, can model and transform a
large range of application requirements into a set of work-
flow tasks. It allows users to represent their computational
needs conveniently for data retrieval, reformatting, and
analysis [1]. Over the past decades, researchers from dif-
ferent scientific domains such as astronomy, physics, earth
science, and bioinformatics have used cloud platforms to
model scientific applications for many real-world prob-
lems. These applications are modeled as workflows [2]
which allow complex and large scientific data to be ana-
lyzed and simulated in a cloud computing environment.
This is because cloud computing has lower the upfront
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capital expenditure on hardware, software, hosting, and
deployment [3]. It presents enormous opportunities that
allow workflow applications to be scheduled at a reduced
cost and time [4].

The cloud provides infinite resources which are acces-
sible via network on a pay-as-you-go basis [5, 6]. These
infinite resources have made cloud computing a unique
selling proposition hub in the IT sector. This has inspired
tremendous researches leading to the deployment of
highly technological platforms such as the internet of
things and mobile edge computing. These platforms,
through cloud computing, can create a smart environ-
ment that provides smart healthcare, cities, transporta-
tion, housing, energy, living, and many more, to facilitate
our way of living. Cloud computing can model various
applications as a set of workflow tasks [7]. These work-
flow tasks have a set of edges which represent the data
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dependencies between the workflows. In other words, it
indicates that a successor workflow task cannot start until
the predecessor workflow task is completed [2, 8—10].

Scheduling workflows in the cloud computing environ-
ment is gaining ground and remains an attractive research
area for many scientists. This is attributed to the rapid
growth of the cloud industry and the opportunities it
present for cloud users. The cloud can deploy resources
virtually or remotely, which allows scientific discoveries
to be carried out on a large scale [11]. However, gen-
erating an effective schedule with the current heuristics
algorithms remains a challenge. Scientific workflows are
big data applications and often require a large budget and
more time to execute. This is due to their nature and data
size. This problem becomes more obvious when the work-
flow tasks to be scheduled have deadlines. Much work has
been done by other researchers to find an optimal solution
to this problem through heuristic algorithms. Neverthe-
less, the problem still exists. This is because most of these
heuristics rely heavily on job priority without considering
the scheduling length of the job. Hence, it is very difficult
to achieve an optimal solution with the current heuristic
algorithms.

Moreover, the workflow scheduling, in particular, is
complicated and has been defined by many researchers
as NP-complete problem, thus making the orchestration
of workflow tasks execution challenging [12, 13]. This is
due to the complexity in the structure of scientific work-
flows, as one workflow application can produce many
discrete tasks for scheduling [14]. As a result, generat-
ing a schedule to optimize the two most important, yet
conflicting scheduling objectives i.e., execution cost and
execution makespan becomes a complicated problem. For
example, optimizing execution cost increases the execu-
tion makespan. This is due to the interlink that exists
between these objectives. Makespan and cost optimiza-
tion problem persist because VM selection which is a
key in managing resource utilization to improve system
throughput is usually ignored by researchers. Execution
cost and makespan conflicting challenge is an acknowl-
edged problem that needs to be addressed appropriately
[15, 16].

In this paper, we addressed the workflow scheduling
problem by extending our work originally presented in
IEEE 6™ Internal Conference on Big Data Security on
Cloud (BigDataSecurity) [17]. In our previous work, a task
splitting algorithm known as Cost Optimised Heuristic
Algorithm (COHA) [17] was used to split large tasks with
longer executing lengths to allow them to meet their dead-
lines at a lesser cost. However, in the previous work, we
only applied execution cost as the performance evaluation
metric which is not adequate to measure the efficiency of
the algorithm. Moreover, there exist some research gaps
such as VM selecting and task mapping criteria that are
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worthy of further investigation. We extended our pre-
vious work to consider tasks execution makespan and
resource utilization as metrics for performance evaluation
and optimization goals.

The main contributions of the paper are summarized as
follows:

1 We introduce a triple-stage layer workflow execution
model and cloud resources model to support achieve
the aim of the proposed algorithm.

2 We presented a multi-objective workflow minimiza-
tion strategy (MOWOS) to jointly minimize the exe-
cution cost and execution makespan of workflow
tasks.

3 A novel measure called MaxVM selection is intro-
duced. This method is responsible for selecting and
mapping workflow tasks with maximum (longer) exe-
cution time on VMs with Maximum (higher) execu-
tion capacities. This is done to help reduce the waiting
times of workflow tasks with longer execution times.

4 An efficient scheme known as MinVM selection
method is introduced to select and map workflows
with minimum (shorter) execution time. This is done
to avoid mapping smaller workflows on VMs with
higher execution capacities that comes with higher
cost and may lead to an increase in execution cost.

5 Re-evaluating the variants of the extended algorithm
through four real scientific workflows.

The remaining paper is structured as follows. Related
work is introduced in “Related work” section. “System
models” section described our system models, a detailed
description of the proposed Multi-Objective Work-
flow Optimization Strategy (MOWOS) is presented in
“Proposed algorithm: multi-objective workflow optimiza-
tion strategy (MOWOS)” section. The performance Eval-
uation, Experimental Setting, Workflow structure, Results
and Analysis are presented in “Performance evaluation”
section, and finally, the paper is concluded in “Conclusion
and future work” section.

Related work

Workflow scheduling is one most difficult task which
needs to be looked at in the cloud computing environ-
ment. This is due to the complexity in its structure, as
one workflow application can produce many discrete tasks
for scheduling [14]. This have been defined by many
researchers as NP-complete problem [13, 18-24]. Con-
siderable research efforts have been made by previous
researchers to solve the workflow scheduling problem,
nevertheless, the problem persists. For example, in [25],
the NP-complete problem was proven. The researchers
transform non-convex constraint to many linear con-
straints using linearization and reformulation based on
heuristic techniques. On the other hand, the researchers
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in [26] presented GA-ETI to consider the relationship
between jobs and their required data to enhance the effi-
ciency in running workflow tasks on cloud resources.
GA-ETI is capable of optimizing both makespan and cost.
However, it is restricted by prior knowledge from iden-
tifying overloaded and under-loaded VM for workload
redistribution.

Different types of research, based on the Min-Min
scheduling algorithm for task scheduling has been con-
ducted to reduce makespan, execution cost, and to
improve the utilization rate of cloud resources. For exam-
ple, Liu et al. [27] took into consideration three task
scheduling constraints such as quality of service, the
dynamic priority model and the cost of service; and pro-
posed an improved Min-min algorithm for task schedul-
ing in a cloud computing environment, for enhanced
makespan and resource utilization rate. The results show
that the improved approach is efficient and can increase
the utilization rate of cloud resources. Also, it can sched-
ule large tasks timely to meet the requirements of cloud
users. However, it is less effective when there are more
large tasks than short tasks. Also, the researchers in lit-
erature [28-31] have acknowledged the impressive per-
formance of min-min in reducing makespan and have
compared their methods with min-min and other existing
algorithms to ascertain the performance of their methods
concerning execution makespan and execution cost.

Many researchers have also used Max-Min in differ-
ent capacities to enhance task scheduling in the cloud
computing environment. For example, Li et al. [32] pre-
sented an improved Max-Min based technique call MIN-
Max-Min algorithms. It reduces the average makespan of
jobs. However, the proposed method is not efficient to
exploit parallel tasks from multiple sources, and hence
not able to reduce idle time slots. Also, the method is
not scalable and does not consider the dynamic nature
of cloud resources. Ghumman and Kaur [33] presented
a hybrid method called improved Max-Min Ant Colony
Algorithm. The method combines the concept of max-
min and ant colony algorithm to get workflow scheduled.
Through simulations, the proposed method is seen to be
efficient in providing better results in makespan and exe-
cution cost. However, the approach does not consider
the length of workflows and VM selection methods, and
therefore could not fully utilize the available resources
effectively.

Also, in [8], a Fuzzy Dominance sort based Hetero-
geneous Earliest-Finish-Time (FDHEFT) algorithm was
presented. The approach has two phases, thus, task pri-
oritizing phase and instance selection phase. In the task
prioritizing phase, the algorithm calculates the priorities
of every task and queue them in non-increasing order with
the upper values ranked first. The instance selection phase
sorts and selects all tasks based on their fuzzy dominance
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(priority) values to minimize cost and makespan. How-
ever, the limitation of FDHEFT is that, tasks are selected
based on their fuzzy dominance values without consid-
ering the size of task and its corresponding VM speed.
Matching workflow task to the appropriate resource for
execution will help avoid task missing their deadline. A
general framework heuristic algorithm for multi-objective
static scheduling of scientific workflows in heterogeneous
computing environments call Multi-objective list schedul-
ing algorithm (MOLS) was proposed in [34]. The algo-
rithm tries to find a suitable Pareto solution by deploying
two strategies, that is, maximizing the distance to the
user constraint vector for dominant solutions and mini-
mizing it otherwise. Though, proposed algorithm is capa-
ble of producing better results, in cost and makespan,
the approach mainly focuses in reducing makespan and
cost without considering the workload and it impact on
resources.

Besides, Cost-Effective Deadline Constrained Dynamic
scheduling algorithm for scientific workflow scheduling
in cloud known as Just-In-Time (JIT-C) was proposed
in [35]. JIT-C rely on the many advantages presented
by cloud, while taking care of the performance differ-
ences in VMs and instance acquisition delay for effective
scheduling to meet deadline of all workflow task at a
reduced makespan and cost. The algorithm addresses
three major issues including VM performance variation,
resource acquisition delays and heterogeneous nature of
cloud resources. Also, the issue of runtime overhead of
the algorithm was not left out. Other methods such as:
(i) Pre-processed approach for combining pipeline tasks
in a single task to save data transfer time and reduces the
runtime overhead, (ii) Monitor control loop technique to
monitors the progress of all running workflow tasks and
makes scheduling decision in terms of performance varia-
tion and (ii) Plan and Schedule method to coordinate with
‘cheapesttaskVMmap’ method for low cost schedule were
deployed. Though the proposed method is proven to be
effective and efficient in meeting deadlines, producing low
makepsan and cost, however, it is very expensive in gen-
erating schedules when the deadline factor is low. At a
reduced deadline factor, the slack time is likely to be zero
or low and when this happen it can increase the cost of
executing a workflow task.

Other different researches based on reducing execution
cost and energy consumption under deadline constraints
are considered. In this regard, Li et al 2015 suggested a
cost-effective energy-aware scheduling algorithm for sci-
entific workflows in heterogeneous cloud computing envi-
ronments. The proposed method is intended to minimize
the execution cost of workflow and reduce the energy
consumption while meeting the deadlines of all work-
flow tasks. To achieve this, four different methods were
deployed which include: i) the VM selection algorithms
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that use the concept of cost-utility to map workflow tasks
onto the best VMs. ii) Task merging methods to min-
imize execution cost and energy consumption, iii) VM
reuse method to reuse the unused VM instance and iv)
Task slacking algorithm based on DVEFS techniques to save
energy of leased VMs. Cost-effective energy-aware algo-
rithms can minimize the execution cost of workflows and
considerably save energy. However, the proposed method
consumes more time to identify VMs types. This can
affect the execution cost of workflow tasks since time
is a major determiner of cost in the cloud computing
environment.

Moreover, Haidri et al. [22] identified VM acquisition
delay as one main challenge for workflow task schedul-
ing in a cloud computing environment. They proposed a
Cost-Effective Deadline Aware (CEDA) scheduling strat-
egy to optimize total workflow task execution time and
economic cost, while meeting deadlines. The method
selects a workflow task with the highest upward rank value
at each step and dispatches it to the cheapest instance for
a reduced makespan and cost. Also, slack time was used
to schedule other tasks to further reduce the price over-
head. However, CEDA is not effective for for large work-
flows. In [36], Customer Facilitated Cost-based Schedul-
ing (CFCSC) algorithm was presented. The method is
presented to schedule a task to reduce cost and execu-
tion makespan on the available cloud resources. CFCSC
is only efficient with small workflow task but performs
abysmally in makespan when large numbers of tasks are
scheduled. This can be attributed to the fact that CFCSC
assigns workflow tasks in a critical path to cloud resources
and allowing the non-critical path workflows to stay long
in the queue.

From the views of all the researchers in the literature,
it is observed that most of the methodologies focus on
resource efficiency to optimize workflow scheduling. This
can cause load imbalance and inefficient resource utiliza-
tion [37]. Different from the aforementioned work, our
study presents a task splitting management system that
considers both resource efficiency and the workload to
be scheduled. Considering the complexity of workflows,
we provided Maxvm and Minvm allocation strategies to
reduce the system execution cost, time and to fully uti-
lize the cloud resources, while ensuring tasks meet their
deadlines.

System models

Workflow application model

A scientific workflow is a representation of a set of work-
flow tasks which is modeled as a directed acyclic graph
(DAG) [38], and defined by a tuple G = (W, E). Where
W = (Wty, Wty, Wt3, Wtg . ...... , Wt,); Wt is a set of ‘n’
workflow tasks in a scientific workflow application.
Where E donate the set of edges which represent the flow
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of data dependencies constraint between workflow task
Wt; and workflow task Wt; which is denoted by E;; =
(Wt;,Wt;). Every edge E;; is a representation of a prece-
dence constraint workflow which indicates that workflow
task wtj cannot start until wt; completes. In this scenario,
workflow task wt; is a predecessor workflow task of wt;
while workflow task wt; is called the immediate succes-
sors of workflow task wt;. On this note, all predecessor
workflow task of wt; is represented as pre(,;) while all the
successor workflow task is represented as succytj). There-
fore predecessor workflow task and successor’s workflow
tasks are donated by Eqgs. 1 and 2:

Pre (Wt;) = { Wg|(Wt;, Wi)eD} (1)

Succ (W) = { We|(Wt;, Wi)eD} 2)

Every workflow DAG has an entry task and exit task.
Figure 1 is a representation of a sample workflow DAG of
12 tasks with entry and exit tasks. An entry workflow task
is a workflow task without a predecessor workflow task
which is donated by wtentry as in Eq. 3.

Pre(Wtentry) =9 3)

An exit workflow task is a workflow task without a
successor, which is also donated by wtexit as in Eq. 4.

Succ(Wtopis) = ¢ (4)

Resource model

Resource allocation involves the management of cloud
resources in the cloud datacenter to increase system effi-
ciency. The resource model consists of several cloud users
and different cloud service providers as in Fig. 2. Let CSP
= (CSpP1, CSP2, CSP3 weveeeene cspn) be the list of Cloud Ser-
vice Providers offering cloud resources (VMs), and let r
= (Us2; {rs} represent the available VM in the cloud data
center which is unlimited for the cloud user. Let K =
UZ:I {R} denote the types of VM where n is the number
of VM in type k [8] which are represented as R = (vm;,
VMg, VN3 ... vmy) be the list of cloud resources avail-
able to a list of cloud users represented by cu = (cuj, cuy,
CU3 crerrerene cuy,) for workflow task execution. These VMs
have different configurations and different prices and are
modelled by a tuple vim(pc; c) [39], where pc represents the
processing capacity of the VM and ¢ denotes the mone-
tary cost of the VM which is payable in hourly bases. Each
resource in the resource list has a unique configuration
and the billing is based on the processing capacity of the
VM. In other-words, a VM with higher processing capac-
ity cost more than a VM with lesser processing capacity
[40]. Let pc = (PCmins PCrmaxsee-e-eeereeee Pcxx) be the processing
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Fig. 1 Sample workflow dag with entering and exit workflow tasks
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capacities of the various VMs in the VM list. For exam-
ple, Amazon EC2 offers VM instances like Micro, Small,
Medium, and Large [41] as deployed in this research. Each
of these VMs are connected with a communication link as
c! and a bandwidth as b". In this model, we assume there
are only two categories of VMs available for tasks mapping
expressed in Egs. 5 and 6.

Mapping 1 = {If ECTYMK — Dl,yy1 then wty > VMW,C]
(5)

Mapping 2 = {If ECTM‘,/tAl/Ik < Dl then wty 3 VMmm}
(6)

Where ECT is the expected completing time of wt; on
VM, Dlis the deadline of wt;. The two categories of VMs
used in this research are defined below:

Category 1
Micro < (Processor 250MIPS) < (cost per hour 0.15)
Small < (Processor 500MIPS) <> (cost per hour 0.3)
and

N4 VMmin {

Category 2
Medium < (Processor 1000MIPS) < (cost per hour 0.6)

VM
< max {Large & (Processor 2000MIPS) < (cost per hour 0.9)

Workflow execution model

Mostly, scientific workflows are used to manage data
flow. It is modeled as a directed acyclic graph (DAG)
which represents a sequence of tasks that processes a
set of data [2, 8]. The execution process of workflow
has two major phases which include, the resource pro-
visioning phase and task generating and mapping phase
[2]. The resource provisioning phase discovers all the
available cloud computing instances (both hardware and
software) and deploys them to guarantee a successful
execution of every incoming task. The tasks mapping
phase, on the other hand, is a process where all the
unmapped tasks in the metadata are mapped onto the var-
ious Virtual Machines (VMs) for execution. The aim of
executing a workflow is to ensure Efficient, Effective and
Just-in-time Scheduling Plan (EEJSP) that will increase
throughput, minimize the makespan, and total execution
cost [42].

(—

e .., N
(e EERSENREN = [

atacenter
Resources
User1
Cloud
o ™ [
12GB 24cB 4sGm users
Min Med- Max- User2
User3

Fig. 2 Cloud resource model
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Our proposed workflow execution model presented in ing constraints arrived at the execution layer for
Fig. 3 is a triple-stage layer model that relies on the oppor- scheduling decisions to be made. The execution layer
tunities and challenges of cloud computing while taking comprising the proposed scheduler (MOWOS); the
into account workflows deadlines and QoS constraints. constraints such as deadlines, budget, and quality of
The first layer is the application layer, followed by the exe- service; and the optimization objectives, is responsi-
cution Layer, and the cloud infrastructure layer. The layers ble for ensuring that every arrived workflow task is
of the workflow execution model used in this work are given the opportunity to be mapped onto a VM by the
highlighted below: scheduler. The job of the scheduler is to ensure that

these workflow tasks are successfully scheduled at a

1 Application layer: The application layer provides the given budget and time. For example, a workflow task

types of workflow applications which is used as a data wt; arrived at the execution layer with a deadline of 2
set for this research. For simulation purposes, four min. In this scenario, workflow task w¢; needs to be
real-world workflows provided by the Pegasus work- mapped onto a VM before its deadline as specified by
flow management system [43—45] are used. These the user. In this case, the scheduler will have to select
workflows have been practically used by different a VM with the capacity to schedule wt; such that, it
researchers to model and evaluate the performance will not violate the deadline constraint.

of workflow scheduling algorithms in the cloud com- The primary aim of the execution layer is to man-
puting domain. These applications are modeled as a age all incoming workflow tasks, to find an optimal
DAG with edges e(wt;, wt;) between the workflow solution to two important, yet conflicting scheduling
tasks. The edges of the workflows represent prece- objectives such as execution makespan and execution
dence constrains. The edge e(wt;, wt;) indicates that cost. Makespan is defined as the maximum finish-
wt; is a direct predecessor of wt; and should finish ing time among all received workflows per time. It
execution before workflow wt; which is an immedi- shows the quality of the workflows assignment on
ate successor of wt; [5]. These workflows are applied VMs from the execution time point of view. The cost
in different scientific domains such as bioinformatics, of execution workflow task (wt; on vmy) is defined
astronomy, astrophysics, etc. [42, 45]. as Cost(wt;, vmy) = ET (wt;,vimy) x Cost(vmy) [40],

2 Execution Layer: In scheduling, a range of workflow where ET (wt;, vimy) is the Execution Time for exe-

tasks with different sizes, with or without schedul- cuting workflow task wt; on vmy and cost (vmy) is

Application La

Scientific Workflows
Montage CyberShake

Inspiral HIPHT

Proposed Scheduling
Heuristic

MOWOS
Execution Layer

Constrains
Budget QoS

— Deadlines

Optimization Objectives
. Cost Time

Fig. 3 Workflow execution model
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the cost for executing workflow task we; on vmg. At
each step of the execution phase, expected completing
time (ECT) of each task is generated and compared
with the deadline of the task as specified by the user
to determine whether the task can meet its deadline.

Expected Completion Time of workflow task we;
on vmy is denoted as ECT (wt;, vmy), which can be
computed by using Eq. 7 [46].

ECT = ET + loadvmy (7)

Where ET is execution time of workflow task wt; on
vimy and loadvmy is the workload of vmy at a given
time.

Execution Time of workflow task w¢; on vmy is
denoted as ET (wt;, vmy), and it can be calculated
using Eq. 8.

TL
T=—""
MIPS, 1

Where TL is the task length, MIPSvmiy is the Million
instruction per seconds of vm.

3 Infrastructure Layer: Cloud provides software
which is available via a third-party over the internet
referred as software as a service (SaaS); services such
as storage, networking, and virtualization known as
infrastructure as a service (IaaS) and hardware and
software tools available over the internet which is
commonly referred to as platform as a Service (PaaS)
[47]. The infrastructure layer which refers to as [aaS
cloud provides services such as storage, networking,
and virtualization services needed to support cloud
computing to function. Our proposed method is mak-
ing use of the services provided by the Iaa$S cloud such
as storage, to store workflow applications, memory to
process the applications, Physical Machines (PMs) to
configure VMs to execute cloud users’ requests.

(8)

Proposed algorithm: multi-objective workflow
optimization strategy (MOWOS)
We Began by making the following assumptions:

1 All workflow tasks submitted can be split into sub-
tasks.

2 Deadlines of workflows are known on arrival.

3 Every large workflow task, when split can meet its
deadline.

4 Provisioned resources are available from the starting
of the workflow exaction to its end.

5 The VMs workload have no affect on the tasks split-
ting process

In this section, we present the proposed MOWOS
algorithm to optimize multi-objective. Multi-objective
workflow optimization involves when two conflicting,
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but yet important scheduling objectives such as execu-
tion cost and execution makespan are optimized concur-
rently in the cloud computing environment. After exten-
sive literature, it was revealed that most of the current
heuristic algorithms are not robust in optimizing con-
flicting objectives such as execution cost and execution
makespan simultaneously. Taking this into consideration,
we extended our previous work (COHA) and presented a
novel scheduling heuristic called Multi-Objective Work-
flow Optimization Strategy (MOWOS) for the purpose of
reducing the system execution cost, time and fully uti-
lize the resources, while ensuring all tasks meet their
deadlines. The proposed method consists of three (3) sub-
algorithms, namely: Task Splitting Algorithm, Minimum
VM (MinVM) selection algorithm, and Maximum VM
(MaxVM) selection algorithm. The pseudo-code of the
proposed MOWOS is presented in algorithm 1. The algo-
rithm starts by identifying all the arrived workflow tasks in
the Wtqueue With a set of workflow tasks Wt=(wt1, wi2,wi3
Wt vereverens Wwin) with their corresponding execution lengths
(ELgs, EL1, EL15 ELy ........... EL,) in a Wt-queye. These tasks
need to be executed on cloud resources (VMs). In the pro-
posed algorithm, we assumed there are only two sizes of
VMs, that is VMpmax and VMmin. We considered the set
of VMs as (VM;, VM, VM......... VM, ) with their corre-
sponding sizes as (VMMax, VMMin ceeeeeee VM,x). When
a task arrived at the queue, MOWOS first calculates the
expected completing time (ECT) of each workflow task
in the wtqueue. Then, a new queue call a deadline queue
(Dlgueue) is created and all the arrived tasks in the wtqueue
are re-queued in the Dlgyeue based on their user-specified
deadlines. In the next step, the ECT of each workflow task
is compared with its user-specified deadline. And if for
example, an ECT of wt; on VM is grater than its dead-
line, then the algorithm will apply the split method in
algorithm 2 to split the task into sub-tasks and employ
the minimum VM selection method (MinVM) to map the
split tasks. MinVM selection method is introduced to map
small tasks on a lower cost VMs. This is done to avoid
scheduling small tasks on VMs with higher MIPS (high-
cost VMs) to reduce the cost of execution. On the other
hand, if the ECT of wt; on VM is equal to its dead-
line, the MaxVM selection method (VM with a higher
MIPS) will be deployed to execute the task faster. The
MaxVM selection method is intended to map all work-
flow tasks that have equal ECT to their deadlines on a
higher VMs to reduce makespan. Detail description of the
sub-algorithms are explained herein:

Tasks splitting algorithm:

Reducing execution cost and execution makespan in the
cloud computing environment, is an important issue for
cloud service providers. If cloud service providers cannot
reduce the cost and time of workflow scheduling, it may
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Algorithm 1: MOWOS

Input : Given a DAG, G=(W/,E), where w has n
workflow tasks (wty, wty, tws,.....wt,)
Output:

1 Wt-queue-list = (Wt1, Wtg, tws,.....wty)

2 VMLjst = (VMy, VMg, e, vmy,)
3 while wtg,ene # ¢ do
4 compute ECT of each wt using equation 8
5 Create Dlgueue and queue the tasks based on their
deadlines
6 foreach ECT of wt; on vimy do
7 Compare the ECT of wt; on vmy to its
deadlines
8 if the ECthi > Dlwti then
9 Apply the ‘Splitting Algorithm
10 Apply MinVM Algorithm to map the
splits tasks and tasks with ECT<DI
11 else
12 if ECthi = Dlwti
13 Apply MaxVM Algorithm
14 Update Dlgueue
15 while Dlgyeye # ¢ do
16 ‘ Repeat step 7 to step 14
17 end
18 if Dlgueue is empty
19 end
20 end
21 end

lead to customer dissatisfaction, which will consequently
affect the profit margin of the service providers. The easy
way to reduce the execution cost and time of workflow
tasks, is to ensure workflows do not miss their deadlines.
Scheduling large workflows tasks onto cloud resources
delays the scheduling processes, thus making some of
the workflows, to miss their deadlines. On the contrary,
splitting large workflows tasks into sub-tasks, reduces
the scheduling length of workflow tasks, thereby allowing
every workflow task to meet their deadlines. Researchers
like [48, 49] have proved that scheduling small size of
workflow tasks on cloud resources provides better exe-
cution makespan and cost than mapping large workflow
tasks on cloud resources. For this reason, we presented
tasks splitting algorithm to split tasks that are likely not
to meet their user-specified deadlines into sub-tasks, to
reduce their scheduling lengths. This helps in: (i) given
effective estimates in execution cost and time, (ii) iden-
tifying and fixing bottlenecks easily, and (iii) saving data
transfer time. The pseudo-code of the tasks splitting algo-
rithm is in algorithm 2. The algorithm starts by identifying
all the arrived workflow tasks in the workflow tasks queue
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with a set of workflow tasks Wt=(wty, wty,wtz wtg ...........
wty). Afterward, the deadline for each task is compared
with its ECT, and if the ECT of wt; on vmy is greater than
its deadline, the task will be split into sub-tasks and sent to
the ready queue for mapping decision. The algorithm ter-
minates when all the large workflow tasks are successfully
split.

MaxVM selection algorithm

The focus of most scheduling policies is to reduce
the waiting time of tasks to allow them to meet
their user-specified deadlines and thereby minimizes the
makespan. Given this rationale, we introduce a method
called maximum VM selection method (MaxVM selec-
tion) to map large tasks effectively on VMs to further
reduced makespan and increase scheduling efficiency.
Given a set of VMs as (VM], VM, VM,......... VM)
with their corresponding sizes as (VMpax, VMMin «-eeeene-
VMxx), the VMs are sorted in descending order and
queued based on the execution speeds or sizes. Then
the MaxVM selection method identifies VM in the
VM queue with a higher execution capacity to exe-
cute the tasks that their ECTs are equal to their dead-
lines. The objective of this method is to help reduce
the waiting time of workflow tasks with maximum exe-
cution time and thereby reduce the total execution
makespan.

Algorithm 2: Tasks Splitting Algorithm

Input : Given a DAG, G=(W,E), where w has n
workflow tasks (wty, wty, tws,.....wtp).
Output:

Begin

For wt-queue = (Wt1, Wta, tws,.....Wty)
Compare the ECT of wt; to its deadline

if the ECT,;; > DI, then

Split the wt; into sub-tasks

Add the split workflow task to the wtgueue(Wt1,
wty, Wt141 ... Wtp)

Ise

if ECTWti =< Dlwti

Put the task in the wtqueue for execution
10 Update the wtgueue

A R W N =

N
o

11 while wt e, is not empty do
12 ‘ Repeat step 4 to 10

13 end

14 if Wtqueue is empty

15 end
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Algorithm 3: MaxVM Selection

Input : List of VMs (vmj, vimg ........ vm,) with
different execution capacities
Output:
Begin
Wt-queue = (Wt1, Wta, tw3,.....wtp)
VM queue = (Vmj, vimy ......... vimy,)
foreach VM in the VM gyeye do
get the MIPS of each VM
if vm.getMips > maxVM. getMips then
maxVM = VM;
end
return maxVM;

O 0 NN R W N -

end

—
(=1

MinVM selection algorithm:

After splitting the large workflow tasks in algorithm 2, the
tasks have to be mapped onto VMs for execution. When
mapping tasks onto VMs for execution, certain decisions
have to be made based on the objectives of the algorithm.
In this research, the objective of the algorithm is to sched-
ule a task for a reduced execution makespan and cost. For
this reason, we introduce the MinVM selection method to
map all the tasks that their ECTs are less than their user-
specified deadlines. This is done to avoid mapping smaller
workflow tasks on VMs with higher execution capacities
that comes with higher cost and may lead to an increase
in execution cost. The algorithm begins by identifying the
MIPS of VMs (line 6), which is used to determine the VMs
with lower MIPS (cheaper VMs) in the VM list (line 7)
and then migrates all the tasks with short execution length
onto the cheaper VMs to maximize profit. The rationale is

Algorithm 4: MinVM Selection

Input : List of VMs (vmj, vimg ......... vm, ) with
different execution capacities
Output:
1 Begin
2 VMgueue = (Vvmj, vimg ......... vm,)
3 VM Size (VIMMax, VIMMin «eveverens VIMyy).
4 minVm = getVmSize
5 foreach v in vimAllocation.keyset do
6 get the MIPS of each VM
7 if MIPS of vimy in the VMAllocation.keyset <
MaxVM then
8 ‘ minVm = vim;
9 end
10 return minVm
11 end
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that, as tasks are split in algorithm 2, and are less than their
deadlines, low-cost VMs can easily execute them with-
out delays. Table 1 presents the abbreviations and their
definitions used throughout the paper.

Time complexity analysis

The overall time complexity of the proposed MOWOS
algorithm is based on execution makespan and execution
cost complexity, which depends on the number of work-
flow tasks and the size of VMs. It starts with algorithm
1 to calculate the ECT of all workflow tasks. Moreover,
its loop at line 7 to generate a schedule by comparing the
ECT of workflow tasks to their deadlines. In total, it takes
O (n + ) where n and 1 are the number of tasks and tasks
length respectively.

Algorithm 2 iterate through to determine the size of
each task and their deadlines to be able to identify the
large tasks for splitting. The time complexity for task split-
ting depends on the size of the tasks and its deadline which
is given as O (s + d) where s is the size of the workflow
task and d is the deadline of the workflow task in a work-
flow queue. After splitting a task, we search for maxVMs

Table 1 Abbreviations and their descriptions

Abbreviations Description

Wt Workflow task

n Number of tasks

k Number of VM types

ECT Expected completion time

DI Deadline

Dlqueue Deadline queue

Wiqueue Workflow tasks queue

MinVM Minimum virtual machine
MaxVM Maximum virtual machine

EL Execution length

ET Execution time

ECT Expected completing time
loadVMj The workflows on virtual machine j
prewty Predecessor workflow task i
SUCCwt) Successor workflow task j
Wlentry) Entry workflow tasks

Wiexit Exit workflow tasks

MIPS Million instructions per second
getMips Get million instructions per second of Vm
getVmSize Get the size of each VM (MIPS)

vmAllocation.keyset Stores VM ID and Allocations

TL Tasks length

MIPSymik Million instruction per seconds of virtual

machine K
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in algorithm 3 and minVMs in algorithm 4 for allocation.
The time complexity of algorithm 3 and algorithm 4 are
the same. The time complexity for allocating tasks onto
VMs is O (n x m). The overall complexity of MOWOS is
givenas O ((n+ 1) + (s+d) + (n x m)).

Performance evaluation

In this section, we present a set of extensive simulation
experiments using different workflow inputs aim at evalu-
ating the performance and contributions of the proposed
MOWOS algorithm. Three different experiments are con-
ducted in this section. In the first experiment, we evalu-
ated the performance of the proposed algorithm in execu-
tion cost. The second phase of the experiment evaluates
the performance of scheduling efficiency (makespan) in
the cloud computing environment and in the third phase,
we evaluated the resource utilization rate of the algo-
rithm and compared the results with existing state-of-art
workflow scheduling algorithms such as HSLJF [46] and
SECURE [50]. This research adopted a simulation-based
approach because, it offers cloud users the opportunity to
pre-test the cloud services to determine their performance
before they are made available to users in the real clouds
[51]. This section consists of three sub-sections, namely;
Experimental Setup, Workflow Structure, and Results and
Analysis.

Experimental setup:

The focus of the experiment is to optimize execution
cost, execution makespan and resource utilization, while
meeting deadlines in Infrastructure as a Service (IaaS)
Cloud. Cloud computing is viewed as a dynamic envi-
ronment that makes it challenging to run large scale
virtualized applications directly on the cloud data cen-
ter [52]. We implemented the proposed method in a
workflowSim simulator [53]. It is a java based simulation
environment with the ability to model and simulates cloud
scheduling algorithms [10]. Workflowsim was extended
from CloudSim [54] to support the modeling of workflow
DAGs in the cloud computing environment. We con-
sidered four different real-world benchmark workflows;
Montage, CyberShake, SIPHT, and Ligo Inspiral as used
in [55-58]. We grouped the workload of each of the work-
flows into four sizes including; small, medium, large, and
extra-large as shown in Table 2. The groupings are based
on standard benchmark-setting of real scientific workflow
applications which have been practically used by differ-
ent researchers to model and evaluate the performance of
workflow scheduling algorithms similar to the work in [1,
13, 59-61]. Choosing different task sizes will afford the
researcher the opportunity to measure the performance
of the proposed method in different workloads. Also, in
the experiment, we consider only four VMs with differ-
ent configurations. The simulation environment is set as
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Table 2 Types of workflows and their sizes

Workflows Size of workflows

Small Medium Large Extra-large
Montage 25 50 100 1000
CyberShake and Sipht 30 60 100 1000
Logo Inspiral 30 50 100 1000

follows: Average bandwidth between resources are fixed
at 20 MBps according to [62, 63], which is the approxi-
mate average bandwidth setting offered in Amazon web
services [2, 64], the processing capacity of vCPU of each
VM is measured in Million Instruction Per Second (MIPS)
as in [65], the task lengths is set in Million Instruction
(MI) according to [55]. The VM configurations, cost, and
processing capacities are modeled based on the Amazon
EC2 Iaa$ cloud offering as proposed by Ostermann et al.
[41, 66]. Detail descriptions of the four VMs deployed are
specified in Table 3. Specifically, the simulation experi-
ments are conducted on a PC processor Intel (R) Core i5
1.6 GHz, 8 GB RAM using Windows 10.

Workflow structure

The simulation process was conducted using four differ-
ent scientific workflows generated by the Pegasus work-
flow generator [67] such as Montage, CyberShake, SIPHT,
and Ligo Inspiral. These workflows are from different
scientific domains and come in large data sets that are
structured differently [5]. The Fig. 4 symbolically rep-
resent the topological structures of scientific workflows.
Detail descriptions of these workflows are presented
in [67].

e Montage workflow is an astronomical application cre-
ated by the National Aeronautics and Space Adminis-
tration/Infrared Processing and Analysis Center. It is
used for the construction of large mosaics of the sky.
Montage application can be re-projected into input
images for the correct orientation while maintaining
the background emission level constants in all images
[68]. Montage tasks are data-intensive and there do
not require larger processing capacity to process|[2].

e CyberShake is used in earthquake science to epitomize
earthquake hazards by generating synthetic seismo-
grams [23]. This is done for easy identification of

Table 3 VM types and pricing model

Virtual machines Processing capacities (MIPS) Cost
Micro 250 0.15
Small 500 03
Medium 1000 0.6
Large 2000 09




Konjaang and Xu Journal of Cloud Computing: Advances, Systems and Applications

(2021) 10:11 Page 11 of 19

Fig. 4 Structure of scientific workflows used [67]

LIGO Inspiral

earth radiance and the production of accurate and reli-
able environmental estimates. CyberShake is a data-
intensive workflow application, that requires a higher
processing system with large memory to execute.

e LIGO Inspiral is the largest gravitational wave obser-
vatory in the universe. It is used in gravitational
physics to exploit the physical properties of light and
space to produce gravitational activities of the earth.
Ligo Inspiral is a CPU intensive task and will need a
large memory to process.

e SIPHT workflow application is from the bioinformat-
ics project at Harvard which is used to automate
the identification of RNAs (sRNAs) encoding genes
for samples of bacterial in the National Center for
Biotechnology Information database [60].

Results and analysis:

This section highlights the results obtained from a
proposed MOWOS algorithm with other two exist-
ing state-of-the-art scheduling algorithms - the HSLJF
and SECURE. In order to examine the performance
of the proposed algorithm over the other two algo-
rithms, the following three performance matrices were
used;

1 The execution cost,
2 The execution makespan,
3 The resource utilization.

The Execution Cost: This is the budgeted total cost
to get the workflow schedule on the cloud resources.
This cost includes processing cost, the cost of transferring

input and output files, etc. The execution cost results
using the Montage workflow for different workloads such
as 25, 50, 100, and 1000 are compared in Fig. 5. The
three algorithms are compared to determine the best cost
optimizer. In using the MOWOS algorithm, a lesser exe-
cution cost is achieved for every task size of montage. In
other words, it is cheaper to generate a schedule with the
proposed MOWOS algorithm than HSLJF and SECURE
algorithms. Among the four workloads of montage, the
SECURE algorithm produced the highest execution cost,
because, it is not able to distribute workflows evenly on all
the deployed resources.

The Fig. 6, illustrates the performance of various algo-
rithms in terms of execution cost, using the Cybershake
workflow on different workloads. The result shows that
the execution cost increases with the number of work-
loads, for each of the evaluated algorithms. From Fig. 6,
the proposed MOWOS algorithm has more advantages
in reducing execution cost than HSLJF and SECURE
algorithms. This is because the proposed method assigns
workflow tasks to resources by considering both the
workload and the resources capacity to handle the work-
load.

The SIHPT and Inspiral workflows (as in Figs. 7 and 8)
were the next set of analysis to compare the execution cost
among the MOWOS, HSLJF and SECURE algorithms. In
comparison with the other algorithms, when MOWOS
is used to generate a schedule, the rate of decrease in
the execution cost is higher as the number of workload
increases, as compared to HSLJF and SECURE algorithms.
Quintessentially, an increase in the number of workloads
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Fig. 5 Comparison of execution cost using Montage workflow

increases the number of split tasks. When more tasks are
split into sub-tasks, it increases the scheduling efficiency,
thereby, reducing the execution cost of workflows. Simi-
larly, the SECURE algorithm is able to improve its perfor-
mance significantly, by narrowing the execution cost gap
in SIPHT workflow, and outperforms the HSLJF algorithm
in the Inspiral workflow.

The four workflows results for the three workloads
indicate that, it cost less to generate a schedule using
the proposed MOWOS algorithm than the benchmarked
algorithms. When the workload is increased, the overall
performance of MOWOS gets much better, as compared
to HSLJF and SECURE algorithms. The improvement
in the proposed algorithm is that, the proposed algo-
rithm employs VM selection mechanisms, thus making it
easy to allocate tasks properly on VMs. Since HSLJF and
SECURE do not use VM selection strategies like minVM
and maxVM selection, it maps workflow tasks onto VMs
without considering the capabilities of VMs. It is also

obvious from the illustrations that, the cost of execution
increases steadily, when large and extra-large workflows
tasks are used. This is because, the cost is determined
based on the number of computation and so, an increase
in the number of workflows tasks (from 100 to 1000) will
lead to a corresponding increase in the cost of execution.

Execution Makespan: The results of makespan for
scheduling different workflow tasks onto a range of VMs
is presented in Fig. 9. It shows the results of makespan
using the Montage workflow with different workloads.
The makespan is the total running time of a resource
during workflow scheduling. In comparing the perfor-
mance of the three algorithms, the proposed MOWOS
algorithm is efficient in distributing workflow tasks on
VMs in all the four different workloads (25, 50, 100, and
1000). The MOWOS algorithm, therefore, achieved a sig-
nificant reduction in makespan as compared to HSLJF
and SECURE algorithms. This is because MOWOS algo-
rithm is able to identify and map the large workflow

80,000
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50,000
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30,000
20,000
10,000

0

Execution Cost

30 50
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Workflow Tasks

100 1000
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Fig. 6 Comparison of execution cost using CyberShake workflow
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tasks onto MaxVMs and the small workflow tasks onto
MinVMs to avoid overloading, since overloaded VM can
slow down the execution process of workflow tasks. For
example, in a workload of 25 workflow tasks, the pro-
posed MOWOS took less than a minute to execute the
25 workflow tasks on VMs, while HSLJF and SECRE algo-
rithms took more than a minute to execute the same
workload.

Similarly, the Fig. 10 presents the results of makespan
for CyberShake workflow, benchmarked under different
workloads or task sizes (30, 50, 100, and 1000). It shows
that the three algorithms are closely doing better in terms
of execution makespan. It is however notices that, in terms
of task execution time, the proposed MOWOS algorithm
takes less time to execute workflows in all the four work-
loads, followed by the HSLJF algorithm and lastly the
SECURE algorithm.

The results generally showed that the proposed algo-
rithm consistently achieves lesser makespan values in
both SIPHT and Inspiral workflows for all the workloads
(Figs. 11 and 12). These results clearly demonstrate that,
the proposed MOWOS algorithm generally generates the
best workflows schedules than HSLJF and SECURE algo-
rithms. The HSLJF algorithm also uses less time to execute
tasks on VMs, as compared to SECURE algorithm. Work-
flow tasks are better performed in MOWOS algorithm
because, it is able to split large tasks that allow every task
to meet their deadlines.

Overall, the proposed MOWOS algorithm produces
better makespan over HSLJF and SECURE algorithms.
The method is therefore more effective when the range
of workloads is increasing. So the more large tasks are
split into sub-tasks, the higher the efficiency of work-
flow task execution, hence the resultant reduction of the
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Fig. 8 Comparison of execution cost using inspiral workflow
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execution makespan. However, by increasing the num-
ber of workflows tasks (from 100 to 1000), the exe-
cution time (makespan) increases, thus a reduction in
the performance of the algorithms [69]. It is obvious
from all the four workflows that, the three algorithms
(MOWOS, HSLJF and SECURE) performs better with a
lesser number of workflow tasks (from 25 to 50) as com-
pared to the large and the extra-large workflows tasks
(from 100 to 1000).

Resource Utilization: This refers to the practice of
making the best use of cloud resources, by keeping the
resources busy at all the stages of workflow execution.
This is beneficial to the cloud service provider, because,
providers maximize profit when resources are fully uti-
lized. Any unused time slot of leased resources, is a cost
to the provider, hence the need to ensure efficient use
of cloud resources, to reduce cost and make profit. The
utilization rate of cloud resources, by each of the three
algorithms, were evaluated as in Figs. 13, 14, 15 and 16.

The figures illustrate the rate of resource utilization
obtained by MOWOS, HSLJE, and SECURE algorithms.
It is shown from the figures that for small workflows,
the proposed MOWOS algorithm has a better perfor-
mance than the existing HSLJF and SECURE algorithms
by 10% and 13% respectively. In the medium workflows,
the respective percentage improvement in the proposed
MOWOS over HSLJF and SECURE is 12% and 13%. For
the large workflows, the MOWOS algorithm has utilized
the resources better than the existing HSLJF algorithm
by 14% and SECURE algorithms by 24%. Lastly, for the
extra-large workflows, the utilization improvement of the
proposed MOWOS over the state-of-art-algorithms such
as HSLJF is 18% and SECURE is 26%.

The overall trend of resource utilization rate is higher
when large and extra-large workflow tasks are used. Con-
versely, the rate of increase in utilization falls when
small and meduim workflows are scheduled. This is
because any increase in the number of workflow tasks
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Fig. 10 Makespan results of CyberShake workflow
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will lead to increased computation performed by each
algorithm.

It is conclusive from the results analysis that, the pro-
posed MOWOS algorithm has less execution cost, better
execution makespan and utilizes the resources better than
the existing HSLJF and SECURE algorithms.

Conclusion and future work

In this research, we investigated workflow scheduling
problems in the cloud computing environment and pre-
sented a novel heuristic approach called Multi-Objective
Workflow Optimization Strategy (MOWOS). The pro-
posed algorithm aims to optimize execution cost, execu-
tion makespan and resource utilization, while allowing
workflow tasks to complete before deadlines. The pro-
posed algorithm consists of three sub-algorithms: a tasks
splitting algorithm, a MaxVM selection algorithm, and a
MinVM selection algorithm. The proposed method has
been implemented and tested in the WorkflowSim sim-
ulator. We have compared the performance of the pro-
posed algorithm with HSLJF and SECURE algorithms
based on four well-known scientific workflows, includ-
ing Montage, CyberShake, SIPHT, and LIGO Inspiral.
The simulation results have shown that, the proposed
MOWOS algorithm has less execution cost, better exe-
cution makespan and utilizes the resources better than
the existing HSLJF and SECURE algorithms. The overall
performance of the proposed algorithm increases signifi-
cantly when compared to HSLJF and SECURE algorithms
for large and extra-large workflow tasks while maintain-
ing a slight improvement for small and medium workflow
tasks.

In this paper, execution cost, execution makespan
and resource utilization are considered as the only two
optimization objectives. We will extend our work to con-
sider energy consumption and load balancing in our
future research, and also will provide more evidence to
reasoning the assumptions made in this research.
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