
Journal of Cloud Computing:
Advances, Systems and Applications

Luciano et al. Journal of Cloud Computing: Advances, Systems
and Applications            (2021) 10:8 
https://doi.org/10.1186/s13677-020-00224-4

RESEARCH Open Access

WISE: a computer system performance
index scoring framework
Lorenzo Luciano1* , Imre Kiss2, Peter William Beardshear1, Esther Kadosh1 and A. Ben Hamza3

Abstract

The performance levels of a computing machine running a given workload configuration are crucial for both users
and providers of computing resources. Knowing how well a computing machine is running with a given workload
configuration is critical to making proper computing resource allocation decisions. In this paper, we introduce a novel
framework for deriving computing machine and computing resource performance indicators for a given workload
configuration. We propose a workload/machine index score (WISE) framework for computing a fitness score for a
workload/machine combination. The WISE score indicates how well a computing machine is running with a specific
workload configuration by addressing the issue of whether resources are being stressed or sitting idle wasting
precious resources. In addition to encompassing any number of computing resources, the WISE score is determined
by considering how far from target levels the machine resources are operating at without maxing out. Experimental
results demonstrate the efficacy of the proposed WISE framework on two distinct workload configurations.

Keywords: Machine performance, Workload, Migration services, Compute performance, Virtual machines, Machine
score, Cloud computing

Introduction
Determining how well a machine is performing with a
given workload configuration is not easily determined, as
it can be approached frommany different angles. Depend-
ing on the workload, optimum performance levels may
also differ. While one workload may require a certain
memory buffer, another onemay excel by pushing the cen-
tral processing unit (CPU) utilization boundary. Choosing
the right computing configuration is a challenging prob-
lem and often becomesmore difficult as a result of the vast
amount of virtual machine (VM) instance types available
on cloud computing platforms. Each instance type varies
the amount of a compute resource and the resource-to-
resource ratio. For example, Compute intensive instances
may have a higher CPU to random-access memory
(RAM) ratio, while memory intensive instances may have
higher RAM to CPU ratio, and similarly with all other
resources.
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The choice of resource amount and ratio is of vital
importance, as it has a crucial impact on the performance
of the machine for a workload configuration [1]. Given the
number of possible workload configurations and the ever-
growing list of instance types, it has become paramount in
today’s cloud computing environment to design a method
for evaluating workload/machine combinations. Alipour-
fard et al. [2] address this issue by introducing CherryPick,
a system that uses Bayesian Optimization to build per-
formance models for various workloads that distinguish
optimal or close to optimal VMs from the rest, with only
a few test runs per workload configuration.
The different types of workload configurations can

have varying effects on the physical computing resources
seen through the resource utilization data. Understanding
how different workload configurations affect computing
resources is crucial for proper resource allocation. To
efficiently allocate system resources for a workload, the
capability to properly predict the characterization of a
workload on the computing resource is essential whether
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that be for on-premises or on cloud computing environ-
ment. Koh et al. [3] use workload characterization by
studying the effects of performance at system-level work-
load characteristics. By analyzing the collected data, they
were able to identify different application clusters that
generate certain types of performance. They subsequently
developed models to predict the performance of a new
application from its workload characterization. Khan et
al. [4] identify repeatable workload patterns by explor-
ing cross-VM workload correlations resulting from the
dependencies among applications running on different
VMs. By treating workload data samples as time series,
they used a clustering technique to identify groups of
VMs that exhibit correlated workload patterns. Then, they
used a method based on hidden Markov models (HMM)
to characterize the temporal correlations in the discov-
ered VM clusters and to predict variations of workload
patterns.
Understanding the characterizations of a workload con-

figuration and how they affect computing resources is
essential for improving compute resource allocation for
the workload. However, customers of cloud computing
providers are tasked with choosing a VM instance type
from a large list of combinations of family types and sizes.
Not only is the choice prohibitively difficult, but has enor-
mous implications on both performance and cost for the
given workload configuration. A fundamental void exists
for a performance indicator that accurately, economically
and consistently provides a performance score for a given
workload and computing machine configuration. Such a
performance indicator would help determine the com-
puting configuration that would perform best with the
workload configuration. Hsu et al. [5] show that there is
often a single cloud configuration that is surprisingly near-
optimal for most workloads. They introduce a collective-
optimizer, MICKY, that reformulates the task of finding
the near-optimal cloud configuration as a multi-armed
bandit problem. MICKY efficiently balances exploration
of new cloud configurations and exploitation of known
good cloud configuration. More relevant work on the
challenge of mapping workload categorizations to phys-
ical resources can be found in [6]. Yadwadkar et al. [7]
address the problem of optimal VM selection with PARIS,
a data-driven system that uses a hybrid offline and online
data collection and modeling framework. PARIS predicts
workload performance for different user-specified met-
rics, and also the resulting costs for a wide range of
VM types and workloads across multiple cloud providers.
While the aforementionedmethods deliver a VM, the pro-
posed WISE score, however, tells us whether we need to
change our configuration or if it is good choice.
The proliferation of cloud computing availability and

the mass adoption of cloud computing as a viable option
to on-premises computing have triggered the need for

workload/machine performance indicators. Cloud com-
puting offers high availability, scalable, efficient and cost
saving computing performance for any workload con-
figuration. These considerations require resource plan-
ning to determine the required compute resources and
how/when compute resources need to grow or be scaled
back. Compute resource planning requires a good under-
standing of both the computing resources capacities and
the workloads resource utilization patterns. Rjoub et al.
[8] address the task of guaranteeing performance while
minimizing resource utilization from a task schedul-
ing perspective. They propose a trust-aware scheduling
solution, which consists of VMs’ trust level computa-
tion, tasks priority level determination, and trust-aware
scheduling. Also, Rjoub et al. [9] present an automated
big data task scheduling approach for cloud computing
environments. The approaches introduced in [8, 9] are for
optimum resource utilization from a task scheduling per-
spective, whereas in our work we describe methods for
scoring the performance of a workload on a particular
machine.
From a workload characterization perspective, Mishra

et al. [10] present an approach for workload classifica-
tion by identifying the workload dimensions, constructing
task classes using a clustering algorithm, determining the
break points for qualitative coordinates within the work-
load dimensions, and merging adjacent task classes to
reduce the number of workloads. They show that the
duration of a task is bimodal, has either a short or a long
duration, and that most tasks have a short duration. Also,
that most compute resources are consumed by a few tasks
with a long duration that have large demands for CPU
and memory capacity. Downey et al. [11] present a char-
acterization of a workload on a parallel system from an
operating system perspective by investigating means to
characterize the stream of parallel jobs submitted to the
system, their resource requirements, and their behavior.
A comprehensive survey of workload characterization can
be found in [12].
In this paper, we present an integrated approach to

derive computing machine and computing resource per-
formance indicators for a given workload configuration.
The proposed WISE framework indicates how well a
computing machine is running with a specific workload
configuration, and whether a different computing con-
figuration could get better performance. Given the need
for a computing performance indicator for a given work-
load configuration, we describe a novel method for scor-
ing the performance of the machine while running the
workload, meaning is the machine being under-utilized,
over-utilized or is it running in a sweet spot? In particular,
we consider how far off from described target levels the
resources are running at, i.e. whether there exists resource
waste or strain.
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The rest of this paper is organized as follows. In
“Method” section, we present the WISE framework for
scoring the performance of a machine, given a specific
workload, and we describe its main algorithmic steps.
Experimental results using the WISE framework on dis-
tinct workloads are presented in “Experiments” section.
Finally, we conclude in “Validation” section and point out
some future work directions.

Method
In this section, we introduce the WISE framework for
computing a fitness score for a workload/machine com-
bination. The proposed approach encompasses described
resource target levels and ranges, as well as the utilization
distances from these targets into a single metric. This per-
formance metric is used to easily determine how well a
workload/machine combination is performing and also to
diagnose possible issues. A key advantage of WISE is that
we can use as many computing resources as necessary. In
addition, computing resource can use as many aggregate
utilization percentage rates as desired. Figure 1 illustrates
hypothetical data points in two dimensions (CPU and
memory), with machines closer to the targets having a
value closer to 1. The WISE score encompasses this infor-
mation into an index score that indicates the performance
of the machine given a workload.
For each computing resource aggregate combination,

we first define a target level and range, and then set the

limits as to what are acceptable running rates for such a
resource using that aggregation. For example, in the case
of CPU we can set the cpu utilization average running tar-
get at 40% with a range between -30% and 30%, meaning
that any rate between 10% and 70% utilization is deemed
to be acceptable, with a rate closer to 40% being better.
The benefits of the proposed machine scoring approach

may be summarized as follows:

• Any number of resources can be used (CPU,
memory, network, disk, etc..) depending on specific
need or for general machine usage and any number of
aggregations can be used for each resource (average,
p95, p50, etc..). More aggregates allow a more specific
machine-workload configuration. We discuss this in
further detail in the “Discussion” section.

• Optimal machines are defined as ones falling within
the defined acceptable range, but any range can be
used depending on need.

• The WISE framework can be used to train models on
machines that have scores above a certain threshold
for better performance, as the models would be
trained on machines that are running between
defined ideal levels.

• Workload Validation is more thorough, as the WISE
score allows evaluation of machines where utilization
data exists from running a specific workload. This is
demonstrated in the “Validation” section.

Fig. 1 Illustration of machine scoring in two dimensions (CPU and memory), with machines closer to the targets having a value closer to 1
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• Users can define their own ideal running
machine/resource rates and ranges, and subsequently
evaluate their machines using the WISE score.

• Getting a WISE score pre and post configuration (vm
or machine) change will validate the benefits with
clear indicators.

• The individual resources’ scores give an indication of
how a resource is running with respect to the defined
targets and ranges. For instance, if a machine has a
low score, then we can look at the individual
resources’ scores and locate the origin of the problem.

Global vs Machine Specific: The running levels
described next can be global or machine specific. Global
resource running levels are applied to all machines, while
machine specific types are applied only the that specific
instance type. The machine specific defined running
levels override the global levels for that machine specific
type.

Setting targets and ranges
How to set good target and ranges for the different com-
puting resources is one of the challenging issues to tackle
while looking at computing performance given different
workloads. The answer to what are acceptable perfor-
mance levels will depend heavily on the use case [13, 14].
The targets and ranges are set after careful considera-
tion on what the performance expectations are for the
given a workload and for what the tolerance level of com-
puting waste and/or unexpected workload changes are.
Varying use cases may have different targets and ranges
depending on tolerance. For instance, non-critical work-
loads have higher targets and ranges, as a slowdown due
to an unexpected spike is not damaging (e.g. an online
library or non-mission critical systems). In addition, criti-
cal workloads add more leeway in their targets and ranges
to account for unexpected spikes in order to make sure
there is no degradation in workload performance (e.g. in
real time systems or mission critical systems).

Algorithmic steps
In this subsection, we describe in detail the main algorith-
mic steps of the proposed WISE framework.

Ideal resource running levels
In this first step, we define the ideal running levels for
each resource ri, where i = 1, . . . , n and n is the total
number of resources. More precisely, for each resource ri
(e.g. average memory utilization), we define the following
parameters:

• The ideal target running utilization level μi for the
given resource (ri).

• The acceptable deviation levels σi from the ideal
target level μi for the given resource ri.

• An upper limit rmax
i for the given resource ri.

Resources running above this level will be penalized
with a zero score.

• If there is no ideal target running utilization level μi
for the given resource ri, but there is an upper limit
rmax
i , set the target and range to 0. Resources running
above this level will be penalized with a zero score,
otherwise the resource will have no affect on the
score.

As an example, if we consider the average memory utiliza-
tion as a resource with parametersμ = 50%, σ = 30% and
rmax
i = 90%, then the average memory utilization running
between 20% and 80% would be acceptable, with levels
running closer to the defined target having a higher score.
The further the running level is from the target level, the
worse the score will be for that resource. Machines having
a running level above the rmax (e.g. 90% or above) would
have the worst possible score for that resource.
Figure 2 (top) displays a normal distribution with target

μ = 0 and standard deviation σ equal to 1. It shows how
a target level and ranges can be defined for resources. The
darker blue area indicates ideal running levels, while the
lighter blue indicates substandard running levels. Figure 2
(bottom) shows a plot of normal distributions with vary-
ing target levels and standard deviations.

Deviations from ideal running levels
In this second step, we define the resource z-score (also
known as standard score) as

zi = xi − μi
σi

, i = 1, . . . , n, (1)

where xi is the resource utilization rate, which is the actual
utilization rate for a given resource ri. The resource z-
score gives the number of standard deviations from the
target μi for each resource ri.
Continuing with the example above, if a machine has an

average memory utilization running level of 80%, then its
z-score is equal to 1, while a machine with a running level
of 20% has a z-score of -1.

Resources scores
In this third step, we define a resource score si for each
resource ri using the hyperbolic tangent and the exponen-
tially monotone functions. The resource score provides a
normalized index value for each resource. The resource
score gives an index value for each resource, where the
utilization rate falls within a normalized range. The closer
the utilization is to the target the better the score will be
and the further it is away from the target the worse the
score will be.
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Fig. 2 Top: Defining a target and standard deviation. Bottom: Plot with different targets and standard deviations

Scoring functions: The scoring functions serve two
main purposes: (1) Standardize the score to within a given
level for both resources and the overall score. A scoring
function converts the resource z-score to a predetermined
range for all resources. This allows users of the WISE
score for both resources and the overall score to exam-
ine the score without knowing a priori what the targets
and ranges are; (2) Limit the negative influence that a
sub-optimal performing resource can have on the overall
score. The scoring functions limit the adverse effect that
one resource can have on the overall score by smoothing
the score when the resource z-score gets larger, as illus-
trated in Fig. 3. Such a situation may arise when a resource
is running way off the target and range levels, resulting
in a high z-score value. This would cause that specific
resource and the overall machine to have sub-optimal
WISE scores without a scoring function, when in fact if
all other resources are running perfectly that one resource

should not determine the overall score outcome. To cir-
cumvent this limitation, we introduced a penalty term in
the WISE framework to deal with the situation where a
resource running above a certain level should cause the
overall WISE score to be at a sub-optimal level to indicate
potential issues that need to be addressed.

Using the hyperbolic tangent function: Given a
resource z-score, we define the resource score as

stanhi = tanh(zi), i = 1, . . . , n, (2)

where tanh(·) is the hyperbolic tangent function, which is
commonly used as an activation function in neural net-
works and it produces outputs in the scale of [−1, 1], as
shown in Fig. 3 (top). A negative value indicates a resource
or machine utilization rate below the ideal rate, while a
positive value indicates a utilization rate above the target
rate. A value of 0 indicates that the resource is running at
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Fig. 3 Top: Hyperbolic tangent function. Bottom: Exponentially monotone function

the target level. A value of -1 indicates a resource that is
at the extreme of under-utilization and a value of +1 indi-
cates a resource at the extreme of over-utilization. Given
this range of values for both the computing resources and
an overall value for the machine allows customers to diag-
nose possible issues with the machine and/or resource
usage.
The interesting aspect of using the hyperbolic tangent

function to compute the resource score is that a negative
score indicates an under-utilized resource with respect
to the ideal target level, while a positive score indicates
an over-utilized resource with respect to the ideal target
level. This indication for each resource can be very helpful
in diagnosing various issues with the computing machine
and/or resources.

Using the exponentially monotone function: For each
resource z-score, we define the resource score as

sexpi = exp(−|zi|), i = 1, . . . , n, (3)

where exp(−|t|) is the exponentially monotone function
shown in Fig. 3 (bottom). This function produces outputs
in the scale of [ 0, 1], where the best score is 1 and the worst
is 0. The interesting aspect of this score is that the best
value would be 1 or close to one and the worst is 0, which
is quite intuitive.
Notice that using the absolute value of zi, the output of

the exponentially monotone function is between 0 and 1.
A value of 1 indicates that the resource is running at the
target level. A value of 0 indicates a resource that is at the
extreme of under- or over-utilization.
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Resource weight: It is important to note that not all
resources have equal importance on the computing envi-
ronment. For instance, CPU and memory might have
more influence on how well or bad a machine is behaving.
This can also vary depending on the workload demands
and goals on the machine. To this end, a predetermined
weight wi is assigned to a given resource score si. This
weight can be used if we notice that certain computing
resources, such as memory and CPU, are more important
to the health of a machine than for example networking or
disk. When no weight is assigned, all resources have equal
weight in the resource score.

Resource penalty
In this fourth step, we introduce a resource penalty term,
which affects the machine score when a given resource
surpasses a maximum threshold. The reason behind using
a penalty term is largely due to the fact that when some
resources are stretched to a certain maximum level, the
whole machine suffers and becomes unusable. We want to
penalize resources running above an upper limit rmax

i for
the given resource so that the machine score is negatively
influenced. To this end, we first subtract the upper limit
rmax
i from the resource running level xi to get a positive
value if the resource is running above the resource upper
limit, 0 if it is equal to it and negative if it is running below
it, i.e.

sgn(xi − rmax
i ) =

⎧
⎨

⎩

−1 xi < rmax
i

0 xi = rmax
i

1 xi > rmax
i

(4)

where sgn(·) is the sign function.
We define the penalty term for each resource as

P(xi) = H(xi − rmax
i ), i = 1, . . . , n, (5)

where

H(t) =
{
1 t ≥ 0
0 t < 0 (6)

is the Heaviside function (also referred to as unit step
function). It is worth pointing out that the sign and Heavi-
side functions are related via the identity: sgn(t) = H(t)−
H(−t).
The penalty term returns a value of 0 or 1 depending

on whether that resource is running above or below the
pre-defined max utilization rate rmax

i . If the resource in
not above the resource limit, then the penalty term has a
value of 0, and hence it does not have any affect on the
resource score. On the other hand, if the resource utiliza-
tion is above the resource limit, then the penalty term for
that resource is equal to 1.
Using nonnegative penalty weight factor α for each

resource ri, we define the weighted penalty term for each
resource as

Pα(xi) = αH(xi − rmax
i ), i = 1, . . . , n, (7)

where an α value of 1 sets the resource penalty term to 1
for values greater than or equal to 1 and 0 otherwise. An
α value smaller than 1 diminishes the affect of the penalty
term, while an α value larger than 1 increases the affect
of the penalty term. A high value for α ensures that a
machine with a resource that is running at levels over the
rmax
i receives the worst possible machine score.

Workload/Machine index score
In this last step, we introduce four variants of the pro-
posedWISE score using the hyperbolic tangent and expo-
nentially monotone functions in conjunction with the
weighted �1- and �2-norms. The WISE score gives a good
indication on how well the computing machine is running
given a specific workload.

Using tanh function and �1-norm: We define the WISE
score as

S1 = min
[
1
n

n∑

i=1
wi |tanh(zi)| +

n∑

i=1
Pα(xi), 1

]

, (8)

where the minimum function is used to assure that a value
greater than 1, which is the worst score on the positive
side, is not returned even when more than one resource
utilization rate falls above its upper limit rate.
The penalty term adds a value depending on whether

or not any of the resource utilization rates are above their
respective upper limit rate. If none of the resources is
above its upper limit rate, then the penalty term is 0 and
hence it has no affect on the WISE score. On the other
hand, if there is at least one or more resources that are
above their respective upper limit rates, then the penalty
term has a value greater than 1, which adversely affects
the machine score, indicating over-utilization. The WISE
score has a value between 0 and 1, with a value of 0 being
the best.

Using tanh function and �2-norm: We define the WISE
score as

S2 = min

⎡

⎣
1
n

√
√
√
√

n∑

i=1
(wi tanh(zi))2 +

n∑

i=1
Pα(xi), 1

⎤

⎦ ,

(9)

which returns values between 0 and 1, with a value of 0
being the best.

Using exponentially monotone function and �1-norm:
We define the WISE score as

S3 = max
[
1
n

n∑

i=1
wie−|zi| −

n∑

i=1
Pα(xi), 0

]

, (10)
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Table 1 Parameters used in the experiments and validation

Resource (r) Target (μ) Range (σ ) Weight (w) Resource Max (rmax) Penalty Weight (α)

CPU/Avg 40% 30% 1 N/A 1

CPU/P95 70% 20% 1 N/A 1

RAM/Avg 50% 20% 1 90% 1

RAM/P95 70% 30% 1 N/A 1

Network/Avg N/A N/A 1 80% 1

where the maximum function is used to assure that the
machine score is nonnegative, with a value of 0 being
the worst score. The exponentially monotone function
returns a value between 0 and 1 with 1 being the best),
while the penalty term returns a value between 0 and the
number of resources n times the parameter α, depending
on the number of resource utilization rates that fall above
the upper limit rate.

Using exponentially monotone function and �2-norm:
We define the WISE score as

S4 = max

⎡

⎣
1
n

√
√
√
√

n∑

i=1

(
wie−|zi|)2 −

n∑

i=1
Pα(xi), 0

⎤

⎦ , (11)

Experiments
In this section, we conduct extensive experiments by
running a two distinct workloads on multiple Amazon
AWS EC21 instances using the utilization data gener-
ated to compare the WISE scores for each instance. We
evaluate the WISE score on two benchmarks, a Mon-
goDB workload which is a cpu intensive workload and a
second Streaming workload which is a networking inten-
sive workload. To account for bursty workloads in the
“Validation” section, we add a new third workload which
is a reconfiguration of the MongoDB workload to have
bursts of activity with periods of less activity.

Experimental setup
In all the experiments, we set the penalty weight factor
α to 1 and used a uniform resource weight. We con-
sidered five resources (r) with target resource utilization
levels (μ), acceptable deviation levels (σ ) and upper lim-
its (rmax) as described in Table 1, which describes all
the parameters that are used for the WISE score calcula-
tion. The optimal thresholds are set to the levels for one
range (σ ) deviation from the target (μ) as described in
Table 2, although these can vary depending on a users use
case. The table describes thresholds used for both func-
tions (TanH and Exp.), which are used to determine if
the workload/machine is performing within an acceptable
range.

1https://aws.amazon.com/ec2

Results
In this subsection, we demonstrate the performance of our
proposedWISE framework on two distinct workload con-
figurations. Figure 4 displays theWISE score and resource
scores for a MongoDB workload using the hyperbolic tan-
gent function and �1-norm, with the best score having a
value of 0. The area between the light blue dotted lines
indicate values that fall within the described acceptable
ranges. Any score that falls outside of this region indicates
over- or under-utilization from the acceptable ranges. A
machine score can still fall within the acceptable range
while having a resource that falls out of range. As aver-
age network utilization has only an upper limit (penalty),
it can only affect the machine score when the utilization
surpasses this limit. This is displayed in Fig. 4 by show-
ing a dot on 0 when it has no affect. Figure 5 displays
the same data as in Fig. 4, except that the overall machine
score is computed using the hyperbolic tangent function
and �2-norm.
Figure 6 also displays the WISE score and resource

scores for a MongoDB workload using the exponentially
monotone function and �1-norm, with the best score hav-
ing a value of 1. The area above the light blue dotted lines
indicate values that fall within the described acceptable
ranges. Any value that falls below this region indicates
over- or under-utilization from the acceptable ranges. A
machine score can still fall within the acceptable range
while having a resource that falls out of range. Figure 7
displays the same data as in Fig. 6, except that the over-
all machine score is computed using the exponentially
monotone function and �2-norm.
Figure 8 displays the WISE score and resource scores

for a Streaming workload. The normalization function
using the hyperbolic tangent function and �2-norm, with
the best score having a value of 0. The area between the

Table 2 Optimal thresholds used in the experiments and
validation

Function WISE Score Threshold Best Score

TanH Resource −0.76 ≤ r ≤ 0.76 0

TanH Overall r ≤ 0.76 0

Exp. Resource r ≥ 0.36 1

Exp. Overall r ≥ 0.36 1

https://aws.amazon.com/ec2
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Fig. 4WISE scores using the hyperbolic tangent function and �1-norm for MongoDB Workload

light blue dotted lines indicates values that fall within the
described acceptable ranges. Any value that falls outside
of this region indicates over- or under-utilization from the
acceptable ranges. A machine score can still fall within the
acceptable range while having a resource that falls out of

range. As average network utilization has only an upper
limit (penalty), it will only affect the machine score when
the utilization goes above this limit. The plot displays this
by showing a dot on 0 when it has no affect. Figure 9 dis-
plays the same data as in Fig. 8, except that the overall

Fig. 5WISE scores using the hyperbolic tangent function and �2-norm for MongoDB Workload
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Fig. 6WISE scores using the exponentially monotone function and �1-norm for MongoDB Workload

Fig. 7WISE scores using the exponentially monotone function and �2-norm for MongoDB Workload
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Fig. 8WISE scores using the hyperbolic tangent function and �1-norm for Streaming Workload

Fig. 9WISE scores using the hyperbolic tangent function and �2-norm for Streaming Workload
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machine score is computed using the hyperbolic tangent
function and �2-norm.
Figure 10 displays the WISE score and resource scores

for a Streaming workload, except the normalization func-
tion using the exponentially monotone function and �1-
norm, with the best score having a value of 1. The area
above the light blue dotted lines indicates values that fall
within the described acceptable ranges. Any score that
falls below this region indicates over- or under-utilization
from the acceptable ranges. A machine score can still fall
within the acceptable range while having a resource that
falls out of range. Figure 11 displays the same data as in
Fig. 10, except that the overall machine score is computed
using the exponentially monotone function and �2-norm.

Validation
In this section, we describe and present results for a
unique validation method that uses performance data
from the benchmarks to validate the efficacy of the WISE
score to determine well performing workload/machine
combinations.

Method
We use two benchmarks to validate the WISE score 1)
MongoDB, a CPU intensive benchmark. Configured to
run steadily over time, 2) MongoDB, configured to run
bursty with spikes of activity and 3) Streaming workload,
a networking intensive benchmark. We first determine
the optimal instances by using the performance metrics

that are generated by running a specific workload on
many different configurations of virtual machines. Some
of the performance metrics used are duration, latency
and throughput. It is important to note that during this
phase of validation the WISE score does not come into
play and neither does the utilization data. Optimal virtual
machines are determined solely on the performance met-
rics of the benchmarks. We then compare the optimal vir-
tual machine selected by using the performance metrics
with the optimal virtual machines generated by using the
WISE score using utilization data to determine if indeed,
the WISE score is a good indicator of workload/machine
performance.

Performancemetrics
Using the performance metrics generated for each work-
load/machine combination by the benchmark, the fol-
lowing criteria is used to determine optimal instances
for a specified workload. First, using the statistical inter-
quartile range outlier detection method, remove any data
points that have a latency or duration of greater than
Q3 + 1.5 ∗ IQR. This removes any instances that are tak-
ing longer to execute with respect to duration and latency,
they are outside of the range of most other instances. Sec-
ond, the remaining instances are sorted by usage cost and
the instances that fall within 3 times the usage cost of the
cheapest instance (after part one) are selected. The first
part removes instances that are under-provisioned and the
second part removes instances that are over-provisioned.

Fig. 10WISE scores using the exponentially monotone function and �1-norm for Streaming Workload
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Fig. 11WISE scores using the exponentially monotone function and �2-norm for Streaming Workload

Resulting in instances that are capable of handling the load
without being over-provisioned.

WISE score
During this phase, the WISE score is calculated for each
workload/machine combination. So for every instance
that the benchmark is run on, we take the utilization
data generated and get a WISE score. None of the per-
formance metrics used in the first phase are used to
calculate the WISE score. The WISE score only uses uti-
lization data, no specific metrics from the workload such
as latency, duration are used in the WISE Score. We use
the Streaming workload to validate the WISE score, by
first coming up with optimal instances using the perfor-
mance metrics generated by running the workload on
many instances such as latency and duration. We then
compare the optimal instances generated from the per-
formance metrics with the optimal instances generated
by the WISE score using various standard evaluation
metrics.

WISE score - quality tenets
The quality tenants for the proposed WISE score can be
summarized as follows:

1. Instances with a WISE score above threshold should
be able to run the workload with acceptable
performance. The precision metric is used as an

indicator of acceptable performance, indicating
percentage of returned machines the run optimally
according to performance metrics.

2. How to account for acceptable performing instances
that are under-utilized? Although a machine has
good performance metrics, it is possible that it is over
provisioned for that specific workload. Therefore,
from the list acceptable performing instances, only
return those that are within 2 times the price of the
cheapest instance.

3. How to account for acceptable performing instances
that are over-utilized? Although a machine has good
performance metrics, it is possible that it is
over-utilized for the specific task, e.g. running very
close to its capacity limits, but have not yet a
resource wall yet. Use a tighter outlier cut-off point
on the performance metrics. By using a tighter
outlier cut-off point we will eliminate any instance
types that may be close to that resource utilization
wall. By looking at only the performance metrics and
not the utilization data, we are not fully able to
determine this, however, the solutions mentioned
above mitigate some of the issues.

4. Use a ranking metric to determine how well the
WISE score rankings compare to the ranked
performance based list sorted by price. Note that this
is not perfect as the WISE score does not take price
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into account, and does not rank a cheaper instance
higher. It will rank higher, an instance that runs
within acceptable utilization ranges. For example in
the performance metrics a cheap instance will be
ranked higher even if it is over-utilized.

5. How well does the WISE score identify well
performing instances at reasonable prices?
Reasonable prices here would be defined as in a range
of 2/3 times the cheapest well performing instance.
We use recall to determine how many of these.

Results
Using the performance metrics and methods described
above, for each workload we get a list of optimal perform-
ing virtual machines. The list derived by using the WISE
scores will be compared to this optimal list. The preci-
sion and recall metrics are used along with a rank based
metric, rank biased overlap [15] to evaluate the ordering
of WISE scores. We used a standard cutoff of 0.36 for the
exponential function and 0.76 for the tangent function.
Results show that the WISE score consistently identifies
optimal instance types for a workload, see Table 3 and
the precision metric. Recall shows how many of the opti-
mal instance types is the WISE score able to identify,
the exponential function with the �2 performs best with
this metric. The ranking metric shows how the WISE
score orders the instance types by score. All of these met-
rics can be tweaked by changing the acceptable threshold
parameter.

Discussion
The WISE framework may suffer from the curse of
dimensionality if irrelevant dimensions (resources) are
added. As less important resources are added, WISE
can become inefficient as the more important resources
become diluted by the less important ones. To circumvent

this issue, only necessary resources and aggregations that
have a certain amount of information gain should be used,
as the impact of one resource is diminished by the number
of resources given, his can also be controlled by the weight
factor. In essence it is important to add resources and
aggregations that add value in determining performance.
Moreover, it would be interesting to do this automati-
cally by computing the information gain of each attribute
and using only the most informative ones. This could
be accomplished by first discarding all attributes whose
information gains are below a pre-defined threshold and
then measuring distance only in the reduced space.
We have designed the WISE score to be very flexible

in its configuration possibilities. We have observed differ-
ent configuration use cases and tolerances for over- and
under-provisioning. Also, certain types of machines such
as scientific supercomputers or GPU intensive computers
can have different configuration levels. It is indeed a chal-
lenging issue to find those optimal values, and the existing
baselines vary based on the use cases. There are various
methods to set these levels, including through observa-
tion and expert knowledge, as well as understanding the
needs of a workload, awareness of a business needs and
cycles. By contrast, the proposed method selects a group
of optimally runningmachines and trains theWISEmodel
to output optimal scores for these machines. That config-
ured WISE model can then be used to get tuned WISE
scores for other machine/workload combinations.

Conclusion
In this paper, we proposed a novel approach for scor-
ing a workload/machine combination representing the
fitness of a machine running a particular workload. The
WISE framework is powerful in that it produces an
index between 0 and 1, indicating the level of fitness for
the workload/machine combination. It is flexible in that

Table 3 WISE Score validation results using benchmark performance metrics

Benchmark Function Norm Precision (%) Recall (%) Ranking

MongoDB (steady) Tanh �1 1.0 0.667 0.699
�2 1.0 0.333 0.51

Exp. �1 1.0 0.333 0.51
�2 0.858 1.0 0.897

MongoDB (bursty) Tanh �1 1.0 0.778 0.806
�2 1.0 0.556 0.564

Exp. �1 1.0 0.556 0.564
�2 0.889 0.889 0.849

Streaming Tanh �1 1.0 0.667 0.704
�2 1.0 0.333 0.842

Exp. �1 1.0 0.667 0.704
�2 0.4 0.667 0575

Boldface numbers indicate the best evaluation metrics
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customers can define individualized targets and ranges to
suit their needs and then use the WISE score to test their
fleet of machines. WISE also allows for general defini-
tions of proper machine running levels to very sophisti-
cated resource definitions. Experimental results showed
the efficacy of the proposed framework on two distinct
workload configurations. Validation results showed that
the WISE score was able to deliver optimal instance types
on three different benchmark configurations. For future
work, we plan to learn the resources’ weights given some
ground truth data and then use theWISE framework with
the learned weights to compute the WISE scores
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