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Abstract

A wide range of data mining applications benefit from the low latency offered by edge computing. However, edge
computing suffers from limited computing resources, which inhibits the applications of the computationally
expensive data mining methods. In the edge-cloud environment, usually, the participants turn to collaboratively
train machine-learning models that yield more accurate prediction results. However, data owners may not be
willing to sharing the own data for the privacy concerns. To handle such disparate goals, we focus on tree-based
distributed data mining scheme with differential privacy, which is computationally friendly. The basic idea of our
approach is based on a distributed ensemble strategy. Each participant builds an elegant decision model based on
their own data, which has a good tradeoff between the computation and the accuracy of the data distribution, and
shares it with other participants after being injected with the elaborate noise. Then the useful knowledge
transferred from the decision models is acquired by other participants in an adaptive ensemble strategy. Both the
theoretical analysis and the experiments show that our scheme provides an efficient data mining manner that can
achieve a good prediction accuracy while providing rigorous privacy guarantee over the distributed data.
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Introduction
During the past few years, with the advent of the edge
computing, numerous smart devices have been popular-
ized and subsequently massive data has been produced
[1]. Data mining has been serving as an epoch-making
technique to extract the hidden information and valu-
able knowledge automatically and intelligently. Thus, a
wide range of data mining applications in edge comput-
ing have been deployed to benefit our daily lives, e.g.
smart healthcare [2], smart homing [3], and intelligent
transportation [4, 5], etc.
A wide range of data mining applications benefit from

the low latency offered by edge computing. However,
edge computing suffers from limited computing

resources, which inhibits the applications of the compu-
tationally expensive data mining methods like artificial
neural networks. In the edge computing environments,
usually, the participants turn to jointly learn an accurate
machine-learning model over multiple data owners.
Moreover, the collection and preprocessing of source
data are implemented on the edge devices side, which
involves some personal privacy data. For example, in the
smart healthcare situation, where the massive embedded
and wearable devices are used to monitor the physical
state of patients, the monitoring data can be used not
only for medical diagnosis or treatments, but also for
malicious institutions such as insurance companies [6].
Thus, it is pressing to resolve the privacy issue to ensure
the data mining over multiple data sets in resource-
limited edge computing.
Existing researches on privacy-preserving distributed

data mining mainly focus on cryptography [7–9]. A
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naive solution is to only share the encrypted data and
all operations are made directly to the ciphertext. For
example, the fully homomorphic encryption is used to
protect the private information in Federated Learning
[10]. However, these cryptographic solutions usually
come with huge additional computing overhead,
which hinders their applications in the edge-cloud en-
vironment. Differential privacy is a new definition of
privacy, whose implementation is based on the per-
turbation technology [11]. So far, there have been
many researches on designing differentially private al-
gorithms for mining tasks such as clustering [12], de-
cision trees [13] and neural networks [14], because of
the efficient implementation of differential privacy.
Recent years, we have witnessed the wide use of

tree-like model in mining tasks. The current re-
searches on privacy-preserving decision tree mainly
concentrate on how to ensure the single data owner
publish their data without revealing any private infor-
mation, but have ignored the distributed scenario
where the data is held by multiple owners [15]. A re-
cent work [16] proposed a tree-based data mining
scheme for the distributed scenario. However, it can-
not be used in edge computing directly for its inflex-
ible training process.
To address the privacy leakage issue in the

resource-limited edge-cloud computing, we propose
an efficient and privacy-preserving tree-based data
mining method over the distributed dataset. Specific-
ally, based on the AdaBoost framework, we design a
differentially private scheme which can build an ele-
gant model while achieving a tradeoff between the ac-
curacy and privacy. In addition, we develop an
adaptive ensemble strategy to learn the data distribu-
tion more accurately when building the basic learner
under the AdaBoost framework. Our experiments
prove that our scheme is effective in both model con-
struction and privacy protection.
To sum up, we make the following key contributions:

(1) We design a distributed data mining scheme with
privacy preservation for edge-cloud computing,
which can not only achieve a good tradeoff between
the accuracy of the built model and privacy preser-
vation, but also take the limitations of computation
resources into account.

(2) We propose an adaptive ensemble strategy for the
construction process, which allows the participants
to improve the prediction accuracy of the basic
learner by combining the models with similar data
distribution without access to these private data.

(3) We theoretically analyze the privacy and
computational complexity of the proposed scheme.
Then a series of simulation experiments are

conducted on two real-world datasets, through
which we prove the feasibility of our scheme.

The rest of the paper is organized as follows. The
related work is presented in Section 2. In Section 3,
we introduce the relevant preliminaries. Section 4
gives an overview of the proposed scheme and the
design goals. In Section 5, we describe our privacy-
preserving distributed data mining scheme in detail.
Section 6 demonstrates the feasibility of our scheme
by giving a theoretical analysis. In Section 7, we
evaluate the performance on two real-world datasets.
Finally, we conclude the paper in Section 8.

Related work
Recently, privacy-preserving data mining has attracted
much attention especially in edge computing where data
mining often involves multiple parties. And several tech-
niques have been proposed to protect privacy of data,
such as k-anonymity, randomization and cryptographic
tools [17]. Differential privacy is the first privacy protec-
tion model with rigorous and provable mathematical
definition [18]. It has been widely used to design
privacy-preserving schemes for data mining such as de-
cision tree [19], principal component analysis [20], and
artificial neural network [21].
As a common data classification model, decision

tree has been applied in different application scenar-
ios. It is widely used because of its transparency and
intelligibility. In order to solve the problem of privacy
disclosure, several decision tree construction schemes
satisfying differential privacy have been proposed.
Blum et al. first proposed the SuLQ framework to
achieve differential privacy, and proposed SuLQ-based
ID3 algorithm by combining with ID3 [22]. But it at
the expense of model accuracy for the excessive noise
required to protect the private information. The work
[13] proposed a DiffP-ID3 algorithm based on the ex-
ponential mechanism to effectively reduce the waste
of privacy budget. Additionally, Friedman and Schus-
ter further proposed the DiffP-C4.5 algorithm to over-
come the limitation of DiffP-ID3 that it can only
solve discrete attributes [13]. Rana et al. [23] and
Fletcher [24] proposed the methods to build differen-
tially private random forest, which can reduce the im-
pact of noise on model accuracy by integrating
several decision trees into an ensemble.
In order to solve the problem of privacy protection

in the distributed environment, Lindell et al. proposed
to use garbled circuit to select the segmentation attri-
bute [25]. Mohammed et al. proposed an differentially
private algorithm under the noninteractive setting to
implement two-party vertically partitioned data min-
ing [26]. And it was used in the scenario of the
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medical data mining [27]. To implement privacy-
preserving collaborative data mining without trust
third part, Goryczka et al. presented an m-privacy
pruning strategy under the hypothesis that partici-
pants could infer the data records contributions of
other data owners by using their own data [28]. The
work [29] proposed to build an ID3 decision tree over
distributed data and secure the private information of
participants by the secret sharing scheme. However,
these solutions can cause higher communication and
computational costs. Gambs et al. proposed the Mult-
Boost algorithm, which achieves the privacy-
preserving collaborative data mining based on Boost-
ing and differential privacy protection [30], however,
it requires a secure third party to accomplish the in-
formation interaction and model integration, which
brings additional communication overhead.
Existing researches mainly focus on how the data

owner can safely publish the tree-based data using differ-
ential privacy [30]. Only the work [16] proposed a dis-
tributed data mining scheme. In this scheme, the
participants share the differentially private model and
the corresponding parameters to build the model collab-
oratively. However, the collaborative training process
must follow a certain sequence, making it not suitable
for the edge computing.

Preliminaries
Differential privacy
Definition 1. Differential privacy
An algorithm F satisfies ε- differential privacy if for any
dataset D and its adjacent dataset D′ with symmetric dif-
ference ∣DΔD′ ∣ = 1, it satisfies:

Pr F Dð Þ∈S½ �
Pr F D

0� �
∈S

� � ≤eε ð1Þ

where S denotes the subsets of all possible outputs of
the algorithm F, ε is privacy budget. The smaller the
privacy budget is, the higher the degree of privacy pro-
tection is provided by the algorithm F.

Definition 2. Global sensitivity
The global sensitivity of the function f is given below:

Δ f ¼ max
D;D

0
f Dð Þ − f D0ð Þk kL1 ð2Þ

Typically, for numerical query functions, the random
noise satisfying Laplacian distribution can be added to
the query results to satisfy ε- differential privacy.

Theorem 1. Laplace mechanism
For any function f :D→ Rd, function F provides ε-differ-
ential privacy on condition that:

F Dð Þ ¼ f dð Þ þ Lap Δ f =εð Þ ð3Þ

where Lap(Δf/ε) is a random noise drawn from the La-
place distribution whose position parameter is 0 and
scale parameter is Δf/ε.
However, when it comes to non-numerical query func-

tions, the Exponential mechanism should be used.

Theorem 2. Exponential mechanism
For any quality function M who takes the dataset D as
input, the output is r ∈ Range(M). Its sensitivity is Δu.
Then, the function M provides ε- differential privacy
when it outputs r from Range (M) with a probability
proportional to exp(εu(D′, r)/2Δu).

Theorem 3. Sequential Composition
Suppose that A1, A2, ⋯, An are random algorithms and
Ai satisfies εi-differential privacy. For arbitrary dataset D,
the sequential composition of these n algorithm

A Dð Þ ¼ t1 ¼ A1 Dð Þ;⋯; tn ¼ An D; t1;⋯; tn − 1ð Þf g
ð4Þ

satisfies ε-differential privacy, and ε ¼ Pn
i¼1εi.

Theorem 2. Parallel Composition
Suppose that a random algorithm A satisfies ε-differen-
tial privacy and a dataset D is divided into m disjoint
subsets {D1,D2,⋯,Dm}. Then the parallel composition
of A on these disjoint subsets

A Dð Þ ¼ t1 ¼ A D1ð Þ; t2 ¼ A D2ð Þ;⋯; tm ¼ A Dmð Þf g
ð5Þ

satisfies ε-differential privacy.

AdaBoost algorithm
According to the relationship between the individual
learners, ensemble learning can be divided into two cat-
egories. One is that basic learners are independent of
each other such as Random Forest (RF), where the per-
formance and training process of basic learner are not
affected by others. The other is that there is strong de-
pendency between basic learners such as AdaBoost [31].
Let D = {(x1, y1), (x2, y2),⋯, (xN, yN)} represent the

training dataset. yi ∈ {−1, +1} is the class label asso-
ciated with xi. The distribution W = (w1i, w12,⋯,
w1N) denotes the weight of each instance in D, and
the initial value of w is w1i = 1/N. During the train-
ing process, Wt + 1 is readjusted from Wt according
to the error rate of the basic learner in each iter-
ation. Each basic learner Ht(x) : x→ {−1, +1} is ob-
tained by running learning algorithm in the training
data set with weight distribution of Wt. The final
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classifier is obtained by the linear combination of
basic learners.

g xð Þ ¼
XT

t¼1
αtHt xð Þ ð6Þ

Model and goals
System model
Figure 1 gives an overview of our system model. As-
suming that there are M participants in the edge-
cloud environment, each participant can exchange the
information over networks and each of them occupies
a private dataset. Note that the data miner can be
one of those participants. During the mining process,
each participant builds the learning model based on
the AdaBoost algorithm, and the basic learner is com-
posed by the local model and the shared model. Spe-
cifically, after training the local model, each
participant shares the model and the corresponding
parameters to others rather than the original data due
to the privacy protection. Furthermore, the DiffPRS
algorithm is proposed to secure the privacy informa-
tion revealed by the model and the corresponding pa-
rameters. When receiving the shared model, each
participant selects the suitable model to be integrated
based on the shared model’s performance on their re-
spective private datasets, and integrate it in an adap-
tive manner.
When a new participant joins the system, instead of

re-training the entire model, the new participant only
needs to execute the proposed learning algorithm to
train the local models and adaptively integrate models.
For the existing participants, they only need to decide
whether the new shared model is worth to integrate or
not.

Model goals
In order to solve the privacy issue in distributed data
mining for the edge computing, the design goals of our
proposed scheme can be summarized as:

1) Privacy protection: sharing the models and its
corresponding parameters will not disclose the
private information. In other words, the
participants in the system do not worry about
the potential malicious participants among other
participants.

2) Accuracy and efficiency: achieve a good tradeoff
between the accuracy of the built model and privacy
preservation while taking the limitations of computation
resources in edge computing into account.

Description of proposed scheme
Problem definition
Suppose that there are M participants and each of them
has a private dataset D ¼ fD1

N1 ;D2
N2 ;⋯;DM

NMg . Among
them, the dataset owned by the m-th participants is Dm

Nm

¼ fðXm
1 ; y

m
1 Þ; ðXm

2 ; y
m
2 Þ;⋯; ðXm

Nm ; ymNmÞg , which contains
Nm tuples and each tuple Xm

n ¼ ðxmn;1;⋯; xmn;KmÞ has Km

attributes. Each label yi ∈ {−1, +1} for the binary classifi-
cation is considered in the proposed scheme.

Our proposed scheme
The scheme proposed in this paper is designed to solve
the problem of data privacy protection for distributed
data mining in the edge-cloud environment. Considering
that the participates may be limited in computation re-
sources, it is hard to train a model by using a learning
algorithm that requires high computing resources like
artificial neural network (ANN) and so on. Thus, based
on the AdaBoost framework, we propose a mining
method over the distributed data to reduce the depend-
ency on the computational resources and data
collection.
In the AdaBoost framework, firstly, it initializes the

weight by average method W1 = (w1, 1, w1, 2,⋯, w1, N),
where the w1, i is equal to 1/N. Secondly, it trains the
basic learner h(x) based on the dataset with Wi

weight distribution. Then, it calculates its error rate
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et ¼
PN

i¼1wt;iIðHtðXiÞ≠yiÞ and αt = log((1 − et)/et)/2
where the αt is to measure the importance of weak
learner h(⋅) among the final classifier. After several it-
erations, the weak models are boosted to be a strong
ensemble model.
The basic idea of proposed scheme is that each par-

ticipant uses the proposed DiffPRS algorithm to train
the local model that satisfies the differential privacy
and shares it with others, then participants select the
proper shared model based on the local model and
integrate the local model into an ensemble as the
basic model in each iteration. Considering the private
information contained in the datasets of the partici-
pants, we share the model and the corresponding

parameters that satisfy the differential privacy instead
of the original data among the participants. In each
iteration, the privacy preservation is achieved by add-
ing noise when calculating the supports of the leaf
nodes where the supports refers to the number of re-
cords in the nodes. The details of our proposed
scheme are outlined in Algorithm 1.

Building differentially private random decision stump
When it comes to choosing the suitable model as the
basic learner, it is crucial to take the limited compu-
tational capability of edge computing into account. It
means that the basic learner must be friendly to com-
putation. Random decision stump is a typical repre-
sentative of the tree-like classification model. In

Fig. 1 An Overview of Differentially Private Distributed Data Mining

Fig. 2 An Example of Random decision Stump
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general, its performance is not as good as the trad-
itional decision trees, but its construction process is
more efficient in computation as it does not com-
pletely depend on the specific database. Therefore,
the random decision stump is used as the basic
learner being boosted to the “strong” classifier in the
AdaBoost framework.
From the previous researches, it can be known that

the direct publishing of the decision tree model and its
parameters has the potential of privacy disclosure [32,
33]. Compared with the traditional decision tree con-
struction methods, each split attribute is determined by
randomly selection in the random stump construction
process and the queries are executed only when deter-
mining the classification in leaf nodes. However, direct
publishing of the random stump and the corresponding
parameters does not meet the requirements for protect-
ing data privacy. Assuming that the structure of the ran-
dom stump based on dataset A is shown in Fig. 2b and
that the attackers have the ability to build an adjacent
dataset B which has only one different record compared
to dataset A (shown in Fig. 2a), the private information
of dataset A can be analyzed by comparing the supports
of leaf nodes or the label of each leaf nodes in the ran-
dom stump after building several random stumps based
on dataset B.
When building the structure of the random stump,

there may be a situation where the support of certain leaf
node is zero. Generally, this type of nodes will be omitted
when publishing the random stump. However, in order to
prevent the attackers from observing a specific random
stump structure to obtain the private information of the
dataset, the nodes with zero support cannot be omitted
when publishing the models. Hence, it is essential to intro-
duce an appropriate noise into the leaf nodes to achieve
privacy protection when publishing random decision
stump. When it comes to choosing the split attributes, it
is unnecessary to introduce the extra randomness, since
random selection is used to determine the attributes of
split nodes, which does not depend on the dataset queries
and introduce randomness at the same time. The details
of constructing a differentially private random decision
stump is presented in Algorithm 2.
Noting that all the differentially private decision

stumps have the same structure, for simplicity, the
model and its corresponding parameters can be unified
into a vector V when exchanging the information among
the multiple participants. Usually, vector V contains
three main elements: root node, the classification of leaf
nodes and its corresponding supports.

Selecting suitable models
Each participant will receive M− 1 models shared by
others during each iteration. Considering that the

performance of random decision stump is limited, for
each specific participator, integrating their own local
model and the shared models into an ensemble model
can reduce the error rate of the base model of each
iteration and decrease the iteration time of the train-
ing process. In other words, model integration can
cut down the amount of noise introduced for privacy
protection, thereby strengthen the availability of the
shared models. Therefore, how to integrate the
models into an ensemble model in an appropriate
manner so that the ensemble model has a higher pre-
diction accuracy than the local models is significant
in the proposed scheme. In addition, simple and in-
discriminate integration of various shared models may
decrease the prediction accuracy of the local models.
To prevent this from happening, we need to decide
which ones of the shared models are suitable to
integrate.

The basic idea is to choose those shared models whose
data distribution is similar to the p-th participant. Mean-
while, it can effectively reduce the negative effects
caused by the sharing model constructed based on the
malicious data sets. Due to the privacy protection con-
straint, checking up the private data sets of other partici-
pants is infeasible. Thus, by comparing all the error rates
of shared models on the training dataset of the p-th par-
ticipant with the training error of the local model, we
can approximately decide which corresponding dataset
is similar to the p-th participant. Note that the shared
model might include certain decision stumps for some
unique attributes. So, it is essential to select a suitable
subset of shared models based on the attributes. For the
p-th participant, the error rate of the q-th participant is
expressed as:

γqp ¼
1
np

Xnp

i¼1
I sign ~H

q
Xp

i

� �
≠ypi

� �� �h i
ð7Þ

where the I(⋅) is the indicator function and the ~H
qð�Þ is

the subset of the random decision stumps trained by the
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q-th participant. The error rate of the p-th participant is
expressed as:

γp ¼
1
np

Xnp

i¼1
I sign Hp Xp

i

� �
≠ypi

� �� �h i
ð8Þ

For every participant, we calculate the absolute value
of the difference between γqp and γp. If jγp − γqpj is less

than a certain threshold ρ, we can deem that the data
distribution of the q-th participant is the same as the
data distribution of the p-th participant. By doing this,
each participant promotes the prediction performance in
the greatest way and strengthens the data distribution
indirectly.

Adaptive ensemble method
After selecting the suitable subset of shared models, we
resort to aggregation to achieve a better performance,
where the aggregation method plays a crucial role. In
the case of classification, plurality voting is the most
popular aggregation methods to draw the final classifica-
tion. That is, the final classification is determined by la-
beling whose votes is the most:

L xð Þ ¼ arg max
c

XT
i¼1

hi xð Þ ð9Þ

Although this aggregation method does promote the
stability across the stumps, it may still have a low predic-
tion accuracy since each decision stump is themselves
poor [34]. Thus, we should not only take advantage of
the statistics on the private data of other participants,
but also take the individual situations into consideration,
when determining the weight of the models selected by
the method mentioned above.
To achieve those goals, when assigning the weight to

each model, we should abide by following principles: (1)
The weights assigned to the shared models should be
positively related to the amount of the corresponding
data sets. This is because that the larger amount of data
set can lead to the lower error rate of the decision stump
due to insufficient sampling. (2) More weights should be
assigned to the local models compared with the shared
models, but it should have an upper bound. This is be-
cause we assume that participates can enhance their data
distribution by integrating other models but the models
from other participants might have a little difference on
data distribution. The purpose of setting the upper
bound is to avoid the situation that the final ensemble
model is the same as the local model due to the exces-
sive weight of the local model.
Considering those principles, for p-participant, let

∂ðqÞpðp¼qÞ denote the weight assigned to the local model

and ∂ðqÞpðp≠qÞ denote the weight assigned to the shared

model. When we determine the weight of the corre-
sponding models, first to calculate the proportion of data
sets owned by all participants

ηp ¼ np=
X

z∈Z
nz; p∈Zp Xð Þ:

Then the weight is updated as following:

∂ pð Þ
q ¼

ηq p≠q
ηq
η2max

� η2max

ηmin

� 	
p ¼ q

8<
: ð10Þ

where the ⌈⋅⌉ is the ceiling function, ηmax is the max-
imum proportion over all participants and ηmin is the
minimum proportion.
When updating the weight of models, for the p-th par-

ticipant, if p ≠ q then ∂ðpÞq ¼ ηq which means that the

weight assigned to the shared models of other partici-
pants is positively related to the amount of correspond-
ing data sets; when p = q then the weight of the p-th

participant is ∂ðpÞq ¼ ðηq=η2maxÞdðη2max=ηminÞe . The value

of ηp belongs to [ηmin, ηmax]. So when ηq = ηmin, ∂
ðpÞ
q gets

its minimum value. And

η2max=ηmin

� �
 �
=η2max≥1⇒∂

pð Þ
q ≥ηq:

We observe that the maximum value for ∂ðqÞpðp≠qÞ is ob-

tained when

ηq ¼ ηmax

∂ pð Þ
q
max

¼ 1=ηmax

� �
η2max=ηmin

� �
 �
8<
:

Based on the above analysis, the proposed renewal
rules abide by the principles mentioned above.

Theoretical analysis of proposed scheme
Privacy analysis
Often, a sophisticated differentially private scheme re-
quires multiple uses of algorithms that satisfy differential
privacy. In our proposal, for a specific participant, the
total privacy budget is P and T denotes the number of it-
erations throughout the collaborative building process.
Thus, the privacy budget that each single random deci-
sion stump can get is ε′ = P/T. In addition, during the
building process, since a series of random decision
stumps of each participant are trained on the same data
set, the total privacy budget consumed by a specific par-
ticipant is the sum of the privacy budget used up in each
iteration according to the sequential composition prop-
erty of differential privacy. For the proposed distributed
data mining scheme, it satisfies the ε-differential privacy
on condition that the constructing process of each par-
ticipant satisfies the ε-differential privacy according to
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the parallel composition property of differential privacy.
Therefore, how to prove that the proposed DiffPRS algo-
rithm satisfies the ε′-differential privacy is the key point.

Lemma 1
DiffPRS algorithm satisfies ε′-differential privacy.

Proof
Let R represent the DiffPRS algorithm, S denotes a deci-
sion stump constructed by the random decision stump
method and λ(S) denotes the decision stump S adding
noise to the leaf nodes according to the DiffPRS algo-
rithm. D and D′ are two adjacent data sets that differ by
at most one piece of data. Supposing that the V1 and V2

are two leaf vectors based on the data sets D and D′, we
can know that the V1 and V2 have at most one different
element. Thus, the global sensitivity of leaf vector is 1.
If the eq. 3 holds for any decision stump S,

P R Dð Þ ¼ Sð Þ
P R D

0� � ¼ S
� � ≤eε0 ð11Þ

then the DiffPRS algorithm satisfies the ε′-differential
privacy.
When publishing the models and the corresponding

parameters, it can be divided into two parts: the struc-
ture of the decision stump and the leaf vector. We can
conclude from the previous discussion that the structure
of the random decision stump introduces randomness
into the construction process and does not rely on the
database queries, so it will not cause privacy disclosure.
For leaf vector, its global sensitivity is 1, so the eq. 6
holds after adding the noise that satisfies the Lap(1/ε)
distribution.

P λ R Dð Þð Þ ¼ Vð Þ
P λ R D

0� �� � ¼ V
� � ≤eε0 ð12Þ

In a word, the DiffPRS algorithm satisfies ε′-differential
privacy.

Complexity analysis
Based on the AdaBoost framework, this paper proposed
a differentially private distributed data mining scheme.
Its computational complexity depends on the AdaBoost
algorithm. When the weak learner is the decision stump,
the overall cost of AdaBoost in T iterations is.
Θ(K(T + log np) +MT +Mnp), where np is the number

of samples of the p-th participant and K represents the
number of attributes in the training data set. The error
rate of model can be computed with Θ(np). In the en-
semble procedure, the computation is consumed by test-
ing in the selecting step so the computational cost is
Θ(Mnp), where M denotes the number of participants.
In the worst case that all M models are chosen in the

selecting step, the computational cost of determining the
weight is Θ(M).Therefore, the total computational cost
is Θ(K(T + log np) +MT(1 + np)) for the p-th participant.
In the proposed scheme, the training procedure and the
ensemble procedure are performed by each participant
independently. In addition, the ensemble procedure is
started after completing its own local model for partici-
pants. Hence, the computational complexity of the pro-
posed scheme depends on the participant with the
largest number of samples, in other words, the total
computational complexity of the proposed scheme is
Θ(K(T + log nmax) +MT +Mnmax).

Performance evaluation
In this section, we conduct a series of experiments to
measure the prediction accuracy of our distributed data
mining scheme with two real-world data sets for classifi-
cation. We implement our scheme on a machine with
Inter Core i5-8265 U CPU 1.6GHz and 8GB RAM run-
ning Windows 10. The proposed scheme is developed in
Python 3.7.

Experiments setting
The experiments are conducted on two real-world data-
sets. The first one is Adult for UCI Machine Learning
Repository [35], which contains 48,442 census records
from the 1994 Census database. After removing the re-
cords with missing values, there are 45,222 records left.
Each record has 14 attributes. The two-class classifica-
tion task is to predict whether an individual’s income ex-
ceeds 50 K or not. The other dataset is General Social
Survey (GSS). There are 11 personal information related
to the happiness, along with 51,020 records [36]. The
final classification task is to infer the response to the
question “Did you watch X-rated movies in the last
year?”. In addition, in order to simulate the scenario of
multiple participants, we horizontally divide Adult and
GSS data sets into 10 sub-datasets with different sizes in
a random way.
In order to evaluate the effectiveness of the proposed

scheme, we compare the prediction accuracy of the
privacy-preserving methods with their counterparts
under different conditions. To be specific, we compare
the performance of our distributed data mining scheme
under various privacy budgets from 0.1 to 4. Also, we
test with different amount of iterations to find out the
suitable value of T. Furthermore, we compare our pro-
posed scheme with the scheme in [16], denoted as
InPriv. Without loss of generality, we set the proposed
scheme without the privacy protection as the base-line.
In our scheme, we set the threshold value ρ = 2 for the
fact that the error rate of AdaBoost is rather small, but
the situation of random decision stump is otherwise. In
addition, all the results are the average of 5 runs.
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Experiment result and analysis
Figure 3 and Fig. 4 show the prediction accuracy of the
classification model established by the proposed scheme
under different privacy budget ε and number of itera-
tions T on the data sets Adult and GSS. From Fig. 3, we
can see that the classification accuracy shows an increas-
ing trend with the privacy budget and the number of it-
erations. Once the number of iterations is determined,
the prediction accuracy gradually increases with the
privacy budget. This is because that the amount of noise
that needs to be added to the leaf nodes to protect the
privacy reduces, so that the availability of data increases
and the shared model can more accurately describe the
data distribution of the corresponding participants. Usu-
ally, increasing the value of T to have more iterations
contributes to more precise models. However, when the
privacy budget is rather small, the more iterations may
have negative effect on the classification performance.
The larger the number of iterations is, the less privacy
budget the random decision stump can get. The final en-
semble models still have a low performance since each
component is themselves poor for privacy protection.
According to the Fig. 4, the performance of the pro-
posed scheme is in line with the expectations on the
GSS dataset.
We also compare our scheme with Inpriv that is based

on the Gradient Boost Descent Tree (GBDT) under the
various privacy budgets: 0.1, 0.3, 0.5, 1.0, 2.0 and 4.0. In
addition, we set T = 30 for Adult dataset and T = 20 for

GSS dataset based on the above observation. The results
are shown on Fig. 5 and Fig. 6.
Through comparison, we can find that sacrificing a

certain level of classification accuracy is required to pro-
tect the privacy over the distributed data. Overall, our
proposed scheme performs better than Inpriv especially
when the privacy budget is small. The reasons are two-
folds: (1) the proposed differentially private decision
stump only needs a small amount of noise to meet the
requirements of differential privacy. (2) In the building
process, the accuracy of the basic learner in each iter-
ation is improved by integrating the shared models
adaptively, reducing the number of iterations, and avoid-
ing the extra noise caused by multiple iterations. But in
some situations, the performance of InPriv is a little bet-
ter than that our proposed scheme. The reason is that
the GBDT classifier can achieve better performance than
that of AdaBoost model in some data set. And when
privacy budget is larger, the privacy protection is no lon-
ger an important factor limiting model accuracy.

Conclusion and future work
In this paper, we proposed an efficient and privacy-
preserving data mining scheme for distributed collabora-
tive data mining in the edge-cloud environment. Focus-
ing on the adaptive boosting, we analyzed the boosting
process, and tailor the elaborate noise to realize differen-
tial privacy for all participants. During the boosting
process, the random decision stump is chosen as the

Fig. 3 The results of different value of T and ε on Adult dataset
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Fig. 4 The results of different value of T and ε on GSS dataset

Fig. 5 The comparison of model performance on Adult dataset
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basic learner for the reason that the edge computing suf-
fers from the limited computational resources. Then, we
proposed an adaptive ensemble method, which can en-
hance the data distribution of participants and avoid the
negative impact of unwanted models. Theoretical ana-
lysis and experimental results verify that our scheme can
efficiently construct mining model with high perform-
ance while providing rigorous privacy guarantee.
This work also poses several future challenges. It is

worthwhile to find a more reasonable way to measure the
difference of data distributions among multiple data
owners without compromising the privacy of data owners.
One promising solution is to relax the privacy require-
ments and allow the participants estimate the data distri-
butions more precisely under privacy constraints. Another
interesting direction is to make the better tradeoff be-
tween the accuracy and the communication costs.
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