
Journal of Cloud Computing:
Advances, Systems and Applications

Liuet al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:13
https://doi.org/10.1186/s13677-021-00226-w

RESEARCH Open Access

A port-based forwarding load-balancing
scheduling approach for cloud datacenter
networks
Zhiyu Liu, Aqun Zhao and Mangui Liang*

Abstract

Today•s datacenter networks (DCNs) scale is rapidly increasing because of the wide deployment of cloud services and
the rapid rise of edge computing. The bandwidth consumption and cost of a DCN are growing sharply with the
extensions of network size. Thus, how to keep the traffic balanced is a key and challenging issue. However, the
traditional load balancing algorithms such as Equal-Cost Multi-Path routing (ECMP) are not suitable for high dynamic
traffic in cloud DCNs. In this paper, we propose a port-based forwarding load balancing scheduling (PFLBS) approach
for Fat-tree based DCNs with some new features which can overcome the disadvantages of the existing load
balancing methods in the following aspects. Firstly, we define a port-based source-routing addressing scheme, which
decreases the switch complexity and makes the table-lookup operation unnecessary. Secondly, based on this
addressing scheme, we proposed an effective routing mechanism which can obtain multiple available paths for flow
scheduling based in Fat-tree. All the path information is saved in servers and each server only needs to maintain its
own path information. Thirdly, we propose an efficient algorithm to implement large flows scheduling dynamically in
terms of current link utilization ratio. This method is suitable for cloud DCNs and edge computing, which can reduce
the complexity of the switches and the power consumption of the whole network. The experiment results indicate
that the PFLBS approach has better performance compared with the ECMP, Hedera and MPTCP approaches, which
decreases the flow completion time and improves the average throughput significantly. PFLBS is simple and can be
implemented with a few signaling overheads.

Keywords: Load-balancing, Link utilization ratio, Addressing scheme, DCNs, Edge computing

Introduction
Recently datacenter networks (DCNs) have became the
most important infrastructure and attracted more atten-
tion in industry. A large number of DCNs have been
deployed worldwidely with massive layered switches [1]
and thousands of servers to interchange a great quan-
tity of data. The DCN architectures (Leaf-Spine, Fat-tree,
etc.,) with multi-tier switching layers need to provide the
required network efficiency and flexibility to interconnect
thousands of top of the racks (ToRs), each with tens-
Tb/s aggregated traffic [2, 3]. The DCNs have to scale

*Correspondence:mgliang@bjtu.edu.cn
Institute of Information Science, Beijing Jiaotong University, Beijing, China

up to accommodate the tremendous increase in quantity
of traffic [4, 5] and assign resources to tasks reason-
ably for the quality of service [6–8]. How to reduce the
end-to-end delay, increase the throughput and keep the
traffic load-balanced is a key issue. In most DCN archi-
tectures, multiple paths are commonly available between
a pair of servers. Therefore, the data flows can be sched-
uled dynamically to evenly distribute traffic load on these
paths. However, the traffic patterns in DCNs are quite dif-
ferent from those in the traditional Internet, so the flow
scheduling is a very desirable but extremely challenging
task.

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article•s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article•s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visithttp://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00226-w&domain=pdf
mailto: mgliang@bjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Liuet al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 2 of 14

In order to find an effective load balancing method
suitable for cloud DCN to improve network utiliza-
tion, we have studied the current theoretical and prac-
tical solutions in this field [9, 10] and summarized the
shortcomings of these solutions. The problem of rout-
ing flows through a capacitated network simultaneously is
the multi-commodity flow(MCF) problem [11] which has
been extensively studied from both theoretical and prac-
tical aspects. The main solution deployed in DCNs today
is Equal-Cost Multi-Path (ECMP) [12]. ECMP employs a
static hashing mechanism and hashes flows to the equal-
cost paths. However, it is easy to cause congestion because
of the large-flow collisions in a DCN, and far from opti-
mal. Therefore, a variety of load-balancing approaches
were proposed to address the problems of ECMP, which
can be classified into the centralized solutions (e.g., Hed-
era [13], Mahout [14], Fastpass [15]), the switch-local
solutions (e.g., FLARE [16], Presto [17], DRILL [18]), and
the end-host solutions (e.g., MPTCP [19], FlowBender
[20]). But all of them have some critical drawbacks. The
centralized solutions are too slow for the traffic volatility
and face severe scalability problems in today’s DCNs. The
switch-local solutions have good scalability and do not
need to calculate per-path statistics, but lack the global
view of a DCN and cannot deal with asymmetry very well.
The host-based solutions such as MPTCP offer greater
parallelism but are difficult to be deployed and make an
already complex transport layer even more complicated
due to the requirements of low latency and burst toler-
ance. Most of the existing solutions do not split flows onto
multiple paths by making good use of the characteristic of
DCNs.

Motivated by the above observations, we define a novel
addressing and routing architecture for Fat-tree (also
applicable to other regular topologies, such as VL2 [21],
Portland [22], BCube [23], DCell [24]). Then, we pro-
pose a host-based dynamical load-balanced scheduling
approach to maximize the network throughput through
balancing the flows in DCNs. In this paper, aiming at the
Fat-tree topology, a port-based load-balancing scheduling
approach is proposed. It can solve the existing problems
of the current methods. For example, it can provide faster
response time for congestion comparing with the central-
ized methods, lower scheduling overhead comparing with
the end-host methods and a global view comparing with
the switch-local methods. Our main contributions can be
summarized as follows.

Firstly, we propose a new addressing scheme which
applies a port-based source-routing address (PA) as the
forwarding address. We use a shim layer to implement
the function below TCP/IP stack and the existing applica-
tions will not be affected. This addressing scheme renders
the table-lookup operation unnecessary and reduces the
complexity of the switches.

Secondly, we design an effective routing mechanism to
obtain multiple available paths which is implemented in
servers for load balancing. Each server has a global per-
spective of the whole network topology and only needs to
maintain routing information of its own flows.

Thirdly, we present a port forwarding load-balanced
scheduling (PFLBS) algorithm for Fat-tree based DCNs. It
can select multiple paths for a flow and update them peri-
odically.Meanwhile, PFLBS can schedule the flow to a new
well-chosen path timely when the links along the old path
become congested.

we conduct experiments to verify the efficiency of the
load-balanced scheduling algorithm. The results show
that PFLBS approach has better performance compared
with the ECMP, Hedera and MPTCP approaches, which
decreases the flow completion time and improve the aver-
age throughput significantly.

The remainder of the paper is structured as follows. The
related work is given in “Related work” section. “Address
ing scheme and load-balancing algorithm” section is dedi-
cated to describe the port-based addressing scheme, rout-
ing mechanism, shim layer design and load-balancing
algorithm in Fat-tree. “Performance evaluation” section is
the performance evaluation. “Conclusion” section is the
conclusion.

Related work
We have proposed a forwarding address which applies the
port-based source routing [25]. In this paper, we aim to
find an effective load balancing method to improve net-
work utilization. Load balancing means that the resources
in DCNs are shared by all tasks equally. It can be described
mathematically by means of a performance criterion.
In general, the purpose of load balancing is to opti-
mize resource utilization, minimize transmission delay,
maximize throughput and avoid overload of any single
resource. Network load balancing aims at evenly schedul-
ing traffic among multiple links by using simple routing
protocols. The common method to balance load in DCNs
today is ECMP. ECMP can statically strip flows across
available paths using flow hashing and performs well for
most of small flows. However, the static mapping results
in congestion and network utilization degradtion because
it can cause flow hash collisions easily and does not take
current network utilization and flow size difference into
account.

Therefore, many researchers have proposed some novel
traffic scheduling mechanisms to balance finer-grained
units of traffic. These methods can be classified into three
categories: centralized solutions, switch-local solutions
and end-host solutions.

The centralized solutions typically run a scheduling
algorithm at a single server. In order to evenly balance
the flows according to traffic patterns and link utiliza-

Liuet al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 3 of 14

tion, it is essential for a load balancing approach to obtain
global network information. Combining with the cen-
tralized network architecture such as SDN [26], some
mechanisms can use controller to collect global network
information and assign flows to proper paths through the
Openflow protocols [27]. However, these solutions lack
scalability because the overhead of collecting informa-
tion, computing paths and deploying paths makes them
impractical to respond timely in large-scale networks.
Meanwhile coordinating decisions in the face of unpre-
dictability and traffic burstiness is also a serious prob-
lem. For example, although Hedera’s scheduler runs every
5 seconds and has the potential to run at subsecond
intervals, recent studies [28, 29] have shown that the
size and workloads of today’s datacenters require parallel
route to be setup on the order of milliseconds. It makes
a centralized solution infeasible even in small DCNs
[30].

The switch-local solutions select paths for flows at local
switches without a global view of the network. They do
not need to collect any global congestion information
and make much hardware or protocol modifications. So
the switch-local solutions always achieve high scalabil-
ity. But these scheduling algorithms do not consider the
realtime states of links for other switches so that they
cannot adapt to changing data flows. For example, Presto
proactively splits each flow into equal small sizes and
then distributes them evenly to the network using ECMP.
Compared with ECMP, Presto achieves higher throughput
and lower flow latency under different workloads. How-
ever, although flows are assigned evenly at each soft edge
switch respectively, the flows arriving at different soft edge
switches cannot ensure uniform. For another example,
inspired by the “power of two choices” paradigm which is
used in the supermarket queue model, DRILL implements
a random packet allocation scheme using the switch local
information. When a packet arrives at a switch in DRILL,
the switch will randomly pick two available ports and
compare their queue length with a recorded port, and then
the packet will be sent to the port with the lowest buffer
among the three. But in Fat-tree topology, DRILL can only
obtain the optimal port which has the minimum queue
length in the upstream switches. The collisions may occur
in the downstream switches and random packet allocation
scheme does not work because the downstream path are
deterministic.

The end-host solutions offer more parallelism and give
more provable guarantees. Clove [31], TeXCP [32] and
DARD [33] dynamically balance traffic through multiple
paths between pairs of ingress-egress routers established
by an underlying routing architecture and only require
modifications to end-host software. However, they have
very limited path condition information and thus can
only predict whether a path is congested or not based

on the common signals such as explicit congestion notifi-
cation (ECN) or round trip-time (RTT). These solutions
rely on the virtualization technology, and the correspond-
ing algorithms are implemented entirely in the virtual
switches of hypervisors. They are not really end-host-
based approaches. MPTCP splits a flow into multiple sub-
flows, leverages the multi-paths between end-hosts and
setups multiple sub-connections to make full use of the
link bandwidth. However, MPTCP needs to be deployed
on the multi-homed servers to transmit subflows sep-
arately and it cannot control the path of subflows, so
subflows are usually handled by ECMP according to the
source and destination addresses.

In a word, although each of the three solutions has its
own advantages, there are also obvious drawbacks. The
problems of the centralized solutions are high cost and
slow response to congestion. The switch-local and end-
host solutions are based on distributed scheduling and
lack of global perspective.

In this paper, we propose a port-based source-routing
addressing and routing algorithm for Fat-tree based
DCNs. It advances the software-defined network con-
cept by pushing the control functionalities to servers and
reducing the computing and storage of switches. Then,
we design a simple shim layer to implement the func-
tionality for probing “good” paths and encapsulating pack-
ets. In this way, servers can monitor large flows, split
them into subflows and transmit them through multi-
ple “good” paths. Comparing to switch-local solutions,
PFLBS obtains more congestion information of all paths
from a source to a destination and makes better routing
decisions. Comparing to the centralized solutions, PFLBS
schedules paths for flows independently in their respec-
tive servers and avoids generating huge signaling overhead
in a centralized controller.

Addressing scheme and load-balancing algorithm
PFLBS is a flow splitting and routing algorithm designed
for Fat-tree network. In this section, we describe the port-
based address, introduce the simple routing mechanism,
design the shim layer protocol and present the PFLBS
approach.

Port-based addressing and forwarding
A general Fat-tree model is a k-port n-tree topology. We
use a special instance with n = 3, which is usually dis-
cussed in the DCN literature. Figure 1 shows the Fat-tree
topology with 4 ports. The labeling mechanism in [34] is
adopted to identify the locations of switches and servers
in this topology. In networking, we consider that the iden-
tification address is used in the control plane to identify
a node and the forwarding address is used in the data
plane to determine the output port to which a packet
will be sent. They should be separate addresses. Now-

Liuet al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 4 of 14

Fig. 1 The 4-port Fat-tree topology

days, IP address and MPLS are widely used in networks
and represent two kinds of typical forwarding addresses.
IP is a node-based addressing which is coded by number-
ing nodes in a network, while MPLS is a label addressing
which is coded by numbering virtual switching labels in a
network. Both of them use lots of memory space to save
routing table or label mapping table on a switch.

To reduce the complexity of the switches, we define
a port-based source-routing address which is coded by
numbering the ports of each node along the path from
the source to the destination. As is show in Fig. 1, if the
source server (0,0,0) sends data to the destination server
(1,0,1) along the path with the bold lines, the PA can be
expressed as {0,2,2,1,0,1}, where the digits 0, 2, 2, 1, 0 and 1
are the output ports of nodes (0,0,0), (0,0,2), (0,0,1), (0,0,0),
(1,0,1) and (1,0,2), respectively. Each output port in the PA
is called as a PA element.

When a source sends a packet to a destination, it
will encapsulate the PA in the packet. When receiving
a packet, a switch only needs to execute the following
actions as shown in Fig. 2: (1) extracting the first PA
element x from the packet and removing it; (2) forward-
ing the packet to the output port indicated by x. As we
can see, this addressing and forwarding scheme makes
the table-lookup operation unnecessary and the switch
can be simple and the scheme also can be used in other
DCN topologies. So far, we achieve a simple data plane for
DCNs.

A novel routing mechanism
Fat-tree is a regular DCN topology. By leveraging the reg-
ularity and the characteristics of the PA, a simple and
efficient routing mechanism becomes feasible. Therefore,
we push most of the routing function to the servers almost
without switch involvement. It offers many obvious
advantages in DCN networks. Firstly, this routing mecha-
nism places most of the control functionalities in servers

and keeps switches much simpler. Secondly, each server
only needs to maintain its own routing paths for local
flows and runs this mechanism independently. Thirdly,
because of the regular characteristic for the Fat-tree topol-
ogy, all the servers completely know the topology and do
not need to store other information except for the param-
eter k. The routing mechanism will enumerate all of the
shortest paths according to the source and the destina-
tion locations in the first step, then choose one or more
suitable paths among all the available ones. This routing
mechanism mainly focuses on the expression of the paths
rather than the routing mechanism. We will introduce the
detailed path selection method in the next subsection.

The routing algorithm is shown in Algorithm 1, which
lists all the paths from the source to the destination in
different conditions. If two servers are connected to the
same level-2 switch, the unique shortest PA is {0, d2}. For
example, the shortest PA from (0,1,0) to (0,1,1) is 0,1 in
Fig. 1. If two servers are connected to the same pod but
not same level-2 switch, the shortest PAs are 4-hop and
the total number of shortest paths is k/2. For example,
one of the shortest PAs from server (0,0,0) to (0,1,1) is
{0,2,1,1} in Fig. 1. If two servers are connected to differ-
ent pods, the shortest PAs are 6-hop and the total number
of shortest paths is k2

4 . For example, one of the shortest
PAs from (0,0,0) to (1,1,1) is {0,2,3,1,1,1} in Fig. 1. In the
rest of the paper, we only consider the complex situation
of servers in different pods and focus on the 6-hops PAs.
As is shown in Algorithm 1, PAs have some characteris-
tics that the first PA element is always 0 and the last three
elements depend on the destination locator. The second
element x and the third element y are variable and values
range from k/2 to k-1 respectively. Therefore, the time and
space complexities are both O

�
k2�

.
The next step is to choose the most suitable paths. We

propose two different PA selection strategies: the non-
switch-assisted method and switch-assisted method. The

Liuet al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 5 of 14

Fig. 2 Port-based forwarding in switch

Algorithm 1 PA enumeration algorithm in Fat-tree
Input: Input the source (s0, s1, s2) and the destination

(d0, d1, d2).
Output: Output all the PAs from source to the destina-

tion
1: if s0 = d0 then
2: if s1 = d1 then
3: PA = {0, d2}
4: else
5: PA = {0, x, d1, d2}, x ∈[k/ 2, k − 1]
6: end if
7: else
8: PA = {0, x, y, d0, d1, d2}, x, y ∈[k/ 2, k − 1]
9: end if

non-switch-assisted method chooses a fixed path accord-
ing to some specific traffic patterns. It does not need
to encapsulate the signaling packets in servers and add
control functionality to switches. For example, a server
will choose a path with PA

�
0, d2 + k

2 , d1 + k
2 , d0, d1, d2

�

which is called destination-based policy under one-to-all
traffic pattern. Here the second and the third PA elements
are chosen depending on the destination locator, so it can
be named as the destination-based policy. This policy can
make sure that the selected paths distributed evenly in the
DCN under one-to-all traffic pattern. Similarly, there is
also source-based policy that can make sure that selected
paths distributed evenly in the DCN under all-to-one
traffic pattern. Although each server can change its PA-
selection policy in terms of different traffic patterns and
contribute to balancing the traffic load, it cannot ensure
the selected paths to be distributed evenly in the net-
work under all traffic patterns. The adaptive PA-selection
method takes advantage of the fact that each PA-selection
policy has its own superiorities under some specific traf-
fic patterns. For instance, when an arbitrary server in pod

p1 sends packets to all the servers in pod p2, the selected
paths will be evenly distributed over all the upward links
of the level-2 switch connected with the source server, all
the level-1 switches and their upward links in the source
pod p1, all the level-0 switches and their downward links
to the destination pod p2, and all the switches and links in
pod p2. Similarly, the source-based policy can ensure the
selected paths distributed evenly in the DCN under all-to-
one traffic pattern. Therefore, in the adaptive PA-selection
method, each server can independently adjust its PA-
selection policy in terms of different traffic patterns. The
adaptive PA-selection method is conducive to balancing
the traffic load, yet it cannot cope with bursty traffic and
dynamically adjust the routing policy. The switch-assisted
method achieves bandwidth utilization of the available
paths by sending signaling messages periodically. It adds
some control signaling overheads to servers and a little
control functionality to switches, but improves the per-
formance of load balancing significantly. We focus on the
implement of the approach in the following subsection.

Shim layer for multipath detection
In order to implement the port-based addressing and
switch-assisted approach, we design a shim layer below
TCP/IP including the shim headers and address tables,
which is shown in Fig. 3. There are two types of shim
headers: data header (“Type”=0) and signaling header
(“Type”=1). Data header is used for packet transmission if
the PA has existed in the address table. Signaling header
is used for probing available PAs and obtaining port infor-
mation of passing switches when a server connects to a
new destination. Therefore, each switch needs to add a
little control functionality to parse the signaling message
and obtain port information by which the signaling mes-
sage is forwarded. Meanwhile, the shim layer maintains an
address table (AT) and an alternative address table (AAT)
indexed by the destinations (through the “Des” field). The
AT stores the primary PA which is currently in use for

Liuet al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 6 of 14

Fig. 3 The design of the shim layer

the destination and the AAT stores other alternative PAs,
which are used for switching path if the primary PA fails
to meet the condition.

When the source sends data to the destination, the shim
layer will firstly search the AT for the primary PA accord-
ing to the destination. If this entry exists, a data header
will be created. The “Type” field of the shim header is
set to 0 and the “PA” field is loaded with the primary
PA, which means that this packet is a data packet and
is sent out along the path indicated by the primary PA.
If the entry does not exist, the shim layer will gener-
ate a signaling message with the “Type” field be 1 to
probe port information of passing switches along each
available shortest path. All the shortest PAs can be cal-
culated by Algorithm 1. Then, we explain the specific
meaning of each filed. The “PA_index” field represents
the index of PA. When a signaling message returns to
the source, this field is used to identiy which PA has
been detected. The fields “port_cnt” and “cur_port” rep-
resent that how many ports of information need to be
collected in total and how many have been collected,
respectively. The fields “LU” and “QL” are used to record
the link utilization ratio and queue length of each for-
warding port that the signaling has passed through. The
“ProbePA” field is used to store address for the signaling
message. ProbePA is designed as a loopback PA which
enables a server sends a signaling message to itself with-
out other servers involved. In Algorithm 1, PA is expressed
as

�
0, x, y, d0, d1, d2

�
(line 8) when a source and a des-

tination are in different pods. ProbePA is expressed as�
0, x, y, d0, d1, x, y, s0, s1, s2

�
which sends a message along

the PA and let it return along the reversed path. Note
that ProbePA does not use the d2 port to send a mes-
sage to the destination at the edgeswitch of downstream.
As a result, each server can implement paths detection by
itself.

Load balancing measure metric
In this section, we will present how to measure the load
imbalance degree of a path and the scheduling trigger
threshold. When a signaling message returns, the link uti-
lization ratio and queue length of each forwarding port
can be obtained through the field “LU” and “QL”. The link
utilization ratio is used to depict the load state of a link,
which is defined as

� u,v(t) = busedu,v (t)
Bu,v

, (1)

where � u,v(t) is the link utilization ratio of the link lu,v
between switches u and v. busedu,v (t) refers to the occupied
bandwidth of the link lu,v, while Bu,v is the capacity of the
link lu,v. Each switch periodically computes the link uti-
lization ratio of all its links. The queue length � u,v(t) is
used to describe the delay state of a link. The queuing
delay of packets will increase with the growing of queue
length. In DCNs, flows can be classified into small flows
and large flows according to their size. Small flows are sen-
sitive to delay which require the queue length is as short as
possible and large flows are sensitive to throughput which
require the link utilization ratio is as low as possible.

We define three metrics to depict the state of a path:
the path bandwidth utilization ratio � PA(t), the variance
of utilization ratio � PA(t) and the average queue length
� PA(t). The path bandwidth utilization ratio � PA(t) is the
maximum link utilization ratio of all the links along the
path represented by PA, which is defined as

� PA(t) = max
∀lu,v∈PA

�
� u,v(t)

�
. (2)

The average bandwidth utilization ratio of a path is
defined as

� (t) =
�

lu,v∈PA � u,v(t)
N

. (3)

Liuet al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 7 of 14

where N is the number of links along PA. Next, the vari-
ance of utilization ratio � PA(t) is used to evaluate the load
fluctuation along the path, which is defined as

� PA(t) =
�

lu,v∈PA
	
� (t) − � u,v(t)

 2

N
. (4)

Finally, � PA(t) is used to evaluate the queuing delay for
the path, which is defined as

� PA(t) =
�

lu,v∈PA � u,v(t)
N

. (5)

The three metrics are important parameters in our work
to evaluate the “good” paths. � PA(t) and � PA(t) are used to
estimate bandwidth capacity and stability of a path. Large
flows depend on the metrics to choose the suitable PAs.
� PA(t) is used to choose the optimal PA with the mini-
mum delay for a small flow. When the path selection is
finished, each server will detect the unbalance degree of
the paths periodically. In order to determine the time to
switch or reselect PAs, we define the thresholds to trigger
the dynamical flow scheduling. � ∗ and � ∗ are thresholds
for � PA(t) and � PA(t) respectively, which directly represent
the scheduling frequency. The lower � ∗ and � ∗ are, the
more evenly flows are distributed but the more frequently
flows will be scheduled once the threshold conditions are
not satisfied. There is no threshold for � PA(t) because
small flows are short-lived and do not need to schedule
frequently. Like the small flows in ECMP, once the opti-
mal path is selected by � PA(t), it will be used until the flow
finishes.

Port forwarding load-Balancing scheduling algorithm
The important purpose of our PFLBS algorithm is to
ensure that the traffic load of each server be evenly dis-
tributed among the available links. It uses a local schedul-
ing method in servers to implement global load balance in
the whole network. The algorithm consists of two steps:
multi-path selection and flow scheduling. In the step of
multi-path selection, when a new flow needs to be trans-
mitted, the shim layer will generate signaling messages to
probe all the available paths. After all the messages return,
the utilization ratio and queue length of all the links along
each path have been collected in the fields “LU” and “QL”.
Then, the values of � PA(t), � PA(t) and � PA(t) for each path
can be calculated easily by “LU” and “QL”. Next we pro-
pose a multipath routing selection algorithm to select the
“good” paths according to the metrics. Firstly, we sort all
the PAs based on the average queue length � PA(t) and
choose the PA with the minimal � PA(t) as the optimal
path. The PA will be stored in the Address Table(AT) and
used for a new flow transmission. This is because that
more than 80% of flows are small flows in DCNs. There-
fore, when a new flow appears in the network, it should

be regarded as a small flow with latency-sensitive char-
acteristic and uses the above PA to transmit data. The
field “count” in AT is used to record the number of pack-
ets that a flow has sent. We define L∗ as a threshold to
identify whether it is a small flow or not. If the “count”
does not exceed the threshold, it is a small flow. Other-
wise, it is treated as a large flow. Secondly, we select some
alternate paths according to � PA(t) and � PA(t) and store
them in the Alternate Address Table(AAT). The remain-
ing PAs are sorted in the ascending order of � PA(t) first.
If there are multi PAs with the same � PA(t), we sort these
PAs in the ascending order of � PA(t). Then we choose the
first “n” PAs from the sorted results and store them in the
AAT. The selection of value “n” will vary with the param-
eter k-port in Fat-tree. In this paper, the value of “n” is
set to 2. The � PA(t) represents whether a path has enough
remaining bandwidth to accommodate a large flow, and
the � PA(t) reflects whether there are potential hot-spot
links in a path or not. The alternate paths are mainly used
to migrate a flow to the optimal path once the flow is clas-
sified as a large flow. The lower the values of � PA(t) and
� PA(t) are, the better a path is. So far, one best path and
two alternate paths are obtained through the multi-path
routing selection algorithm as is shown in Algorithm 2.

Algorithm 2 Multi-path Routing selection algorithm in
Fat-tree
Input: Input a source (s0, s1, s2) and a destination

(d0, d1, d2).
Output: optimal PA in the AT and alternative PAs in the

AAT
1: the source enumerate all the available PAs using Alg.1

and calulate ProbePAs
2: for ProbePAi ∈ ProbePAs do
3: generate a signaling message and send it out to

collect the link utilization ratio and queue length
4: calculate � PA(t), � PA(t) and � PA(t) for the path
5: end for
6: sort all the PAs in the ascending order of � PA(t)
7: choose the path with the minimal � PA(t) as the opti-

mal path and store it in the AT
8: sort the remaining paths in the ascending order of

� PA(t)
9: if there are multiple paths with the same � PA(t) then

10: sort these paths in the ascending order of � PA(t)
based on the previous sort result

11: end if
12: choose the first two paths as the alternate paths and

store them in the AAT

In the next stage, the server will monitor the PAs in
the AT and AAT periodically to keep load balanced in
the network during local data flow transmission. When

https://doi.org/10.1109/TNET.2015.2434879
https://doi.org/10.1109/TNET.2015.2434879
https://doi.org/10.1186/s13638-019-1557-3
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.1109/TII.2020.2X00000
https://doi.org/10.1109/TII.2020.2X00000
https://doi.org/10.1016/j.future.2019.12.039
https://doi.org/10.1016/j.future.2019.12.039

https://doi.org/10.1109/INFCOM.2011.5934956
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2829988.2787507
https://doi.org/10.1145/2829988.2787507
https://doi.org/10.1145/2834050.2834107
https://doi.org/10.1145/2834050.2834107
https://doi.org/10.1145/2674005.2674985
https://doi.org/10.1109/ICC.2014.6883781
https://doi.org/10.1109/ICC.2014.6883781
https://doi.org/10.1109/IPDPS.2004.1302913
https://doi.org/10.1109/IPDPS.2004.1302913

	Abstract
	Keywords

	Introduction
	Related work
	Addressing scheme and load-balancing algorithm
	Port-based addressing and forwarding
	A novel routing mechanism
	Shim layer for multipath detection
	Load balancing measure metric
	Port forwarding load-Balancing scheduling algorithm
	Handing asymmetry

	Performance evaluation
	System setting
	Overheads analysis
	Workloads
	Results and evaluation

	Conclusion
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

