
Journal of Cloud Computing:
Advances, Systems and Applications

Tang et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:23
https://doi.org/10.1186/s13677-021-00240-y

RESEARCH Open Access

Joint optimization of network selection
and task offloading for vehicular edge
computing
Lujie Tang1, Bing Tang1* , Li Zhang1, Feiyan Guo1 and Haiwu He2

Abstract

Taking the mobile edge computing paradigm as an effective supplement to the vehicular networks can enable
vehicles to obtain network resources and computing capability nearby, and meet the current large-scale increase in
vehicular service requirements. However, the congestion of wireless networks and insufficient computing resources of
edge servers caused by the strong mobility of vehicles and the offloading of a large number of tasks make it difficult
to provide users with good quality of service. In existing work, the influence of network access point selection on task
execution latency was often not considered. In this paper, a pre-allocation algorithm for vehicle tasks is proposed to
solve the problem of service interruption caused by vehicle movement and the limited edge coverage. Then, a system
model is utilized to comprehensively consider the vehicle movement characteristics, access point resource utilization,
and edge server workloads, so as to characterize the overall latency of vehicle task offloading execution. Furthermore,
an adaptive task offloading strategy for automatic and efficient network selection, task offloading decisions in
vehicular edge computing is implemented. Experimental results show that the proposed method significantly
improves the overall task execution performance and reduces the time overhead of task offloading.

Keywords: Mobile edge computing, Vehicular networks, Task offloading, Performance optimization

Introduction
Edge computing is an open platform which integrates
core capabilities of computing, storage, and services at
the edge of the network that near the source of sensor
data. It provides intelligent services at the edge which
meets the key needs of industry digitalization, real-time
data streaming, data intelligence, security and privacy
protection, etc. Edge computing has obtained great atten-
tions from academia, industry, and government. Mobile
edge computing (MEC) offers cloud capabilities and ser-
vice environment for Internet of Things (IoT) applications
at the edge of the mobile cellular network, such as 5G,
which is regarded as a promising solution in which com-
puting resources are pushed to the radio access network

*Correspondence: btang@hnust.edu.cn
1School of Computer Science and Engineering, Hunan University of Science
and Technology, 411201 Xiangtan, China
Full list of author information is available at the end of the article

(RAN) and services are provided near the devices [1].
In the MEC-based vehicular network environment, MEC
servers with powerful computing and storage capabilities
are installed at the edge of the vehicular networks, usually
collocated with the roadside units (RSUs). The communi-
cations between the vehicles and RSUs is through small
cell networks. Each edge server is collocated with an
access point (AP) (e.g., 5G base station). Users can require
the mobile edge services by selecting a nearby AP. The ser-
vices for users are deployed at a nearby edge server rather
than the remote cloud, so as to reduce the latency from
end devices to the cloud-hosted service. Merging MEC
with the dense deployment of 5G macro/micro base sta-
tions, makes possible a ultra-low latency access to cloud
functionalities [2–4].

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00240-y&domain=pdf
http://orcid.org/0000-0003-1584-7186
mailto: btang@hnust.edu.cn
http://creativecommons.org/licenses/by/4.0/

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 2 of 13

Vehicular networks have gained huge popularity in
recent years due to their wide range of applications. Many
new types of vehicular services have emerged to pro-
vide good travel experience for users, such as autonomous
driving, traffic safety and traffic monitoring. These ser-
vices depend on computing-intensive workloads with
time constraint. Although with the continuous advance-
ment of technology, today’s vehicles have obtained more
capability than before, and many in-vehicle applications
can be completed by the vehicle’s local computing power.
However, there are still some services that the vehicle
cannot handle, such as autonomous driving technology,
which establishes and recognizes the driving environ-
ment of the vehicle through radar, sensing andmonitoring
equipment on the vehicle, and then realizes the automatic
control of the vehicle. Facing the complex and time-
varying road network traffic environment, the character-
istics of weak processing capacity and low storage capacity
of vehicle on-board equipment will greatly restrict the
real-time processing and effective storage of large-scale
traffic information collected by vehicles, which will seri-
ously affect the safety and reliability of autonomous driv-
ing. At the same time, some new applications such as road
environment augmented reality (AR), traffic behavior
intelligent guidance, voice-based human-vehicle dynamic
interaction, etc., usually also require powerful computing
capability and the support of massive data content, which
are bringing users with rich and convenient driving expe-
rience, and also poses severe challenges to the computing
and storage capabilities of smart vehicles. The introduc-
tion of MEC into vehicular networks is an effective way
to solve the above problems. In the MEC-based vehicu-
lar networks environment, the computation tasks could be
executed locally in the vehicles or offloaded to the nearby
MEC servers, according to conditions and constraints
[5, 6]. However, it is still faced with the following chal-
lenges:
First, the vehicles have significant movement charac-

teristics, and their geographical positions change with
time. If the vehicle runs a large amount of computa-
tion tasks, it usually passes through the coverage of
multiple cells during task executions. During the move-
ment of the vehicle, the distance between the vehi-
cle and the edge server that serves the vehicle is
dynamically changing. If the distance between them
becomes too large, the quality of service (QoS) pro-
vided cannot be guaranteed, and user experiences will
also decrease. Therefore, there is a need for a strategy
to dynamically adjust task execution as vehicles moving
[6].
Second, the vehicle maybe within the coverage of mul-

tiple available APs at the same time in a cell. If the user
chooses the AP autonomously, it may cause resource com-
petition and network congestion. Therefore, how to select

the appropriate network for each vehicle is also a problem
to be considered.
Third, when the vehicle is performing network selec-

tion and task offloading, if the AP selected by the vehicle
is close to the edge server where the task is executed,
the access delay is only occurred by the connection to
the AP. On the contrary, the task needs to be transmitted
from the AP to the edge server far away, which introduces
additional communication overhead. There are not any
specific protocols that are used during the execution of the
algorithms for the network selection and the task offload-
ing. How to balance the access delay of the network access
and the communication delay is a difficult problem to be
solved.
In addition, if the data volume of the computation

task is large and the coverage of the cell is relatively
small, during the offloading process, the vehicle may have
drove out of the previous cell before the task has com-
pletely offloaded, so that the interrupted task needs to be
retransmitted, which increases communication overhead.
Therefore, static task offloading strategy cannot solve this
problem, and how to plan the task offloading in a dynamic
manner is a problem that this paper focuses on.
In this paper, we propose an adaptive task offloading

strategy in the MEC-based vehicular networks environ-
ment, which considers a scenario where the vehicle needs
to pass through multiple cells during the offloading pro-
cess for a large task. The impact factors we considered in
the adaptive computation task offloading strategy include
vehicle speed, cell coverage, data transmission rate, access
point load in the cell, and MEC server workload. Consid-
ering these impact factors, an optimal plan is made for the
next offloading strategy, so as to achieve that there will be
no interruption of task execution when passing through
multiple cells during the offloading process, and also try
to achieve the minimized total delay in completing the
tasks.
In the offloading strategy proposed in this paper, first,

the whole task is divided into many small task units
(TUs) [7], and then, based on some restrictions, we
obtain the following decisions: the AP to which the task
is connected, and the edge server to which the task is
offloaded, and the number of TUs allocated to the edge
server, and the proportion of the corresponding num-
ber of TUs offloaded to the edge server to the total TUs
allocated to the cell. It is an online strategy that when-
ever a vehicle enters a new cell, the above offloading
strategy will be re-executed to obtain an optimal com-
putation task offloading scheme for the new cell. There-
fore, the strategy proposed can achieve a lower delay
for task execution without interrupting the computation
process.
The main contributions of this paper are summarized as

follows:

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 3 of 13

• We proposed a pre-allocation algorithm for vehicle
tasks. It can comprehensively consider vehicle
movement characteristics and the surrounding
environment of the vehicle, and dynamically adjust
the execution and offloading of tasks.

• We proposed the optimization of the selection of
network access points, which reduces network
congestion and resource competition caused by
vehicles choosing network access points
independently.

• We designed and implemented an adaptive
offloading strategy, which can provide vehicles with
automatic and efficient network access selection, task
offloading and task migration decisions.

The rest of this paper is organized as follows. The
second section summarizes related work. Then, we intro-
duce our system model and solution, and proposed a
pre-allocation algorithm and an adaptive offloading strat-
egy, followed by simulation and result analysis. The final
section summarizes the whole paper and discusses future
work.

Related work
In recent years, the edge computing paradigm has
attracted great attentions from academia and industry. It
has the characteristics of fast processing speed and short
response time, which could make cloud computing ser-
vices closer to end users [8]. Edge computing has provided
a powerful driving force for many key technologies such
as 5G, IoT, AR, and vehicle-to-vehicle (V2V) commu-
nication, etc. There are three common edge computing
models: Cloudlets [9], fog computing [10], and multi-
access/mobile edge computing [11]. MEC, as a new archi-
tecture that moves service capabilities from the core net-
work to the edge network, has caused extensive research
by scholars [6, 12–14].
The key research topics in MEC include the place-

ment of edge servers, computing migration and offload-
ing, and edge caching, etc. Computation migration and
offloading are about migration decisions and resource
allocation. By migrating mobile device tasks/applications
to servers in network for execution, it can enhance the
computing capabilities of mobile devices and reduce time
and energy consumption when running applications on
mobile devices [1]. In recent years, several studies have
addressed the mobile task offloading in theMEC scenario.
The task offloading can be classified into several aspects
according to optimization objectives, includes: delay or
latency constrained offloading [15, 16], energy-efficient
offloading [17, 18], energy-latency tradeoff for offload-
ing [19, 20], cost-efficient offloading [21], etc. Generally
speaking, the offloading is a multi-objective optimization

problem, which is usually solved by optimized or heuristic
algorithms.
Task partitioning and task division are usually adopted

in offloading. In [22], Wu et al. proposed a path-based
offloading partitioning algorithm to determine which por-
tions of the application tasks to run on mobile devices
and which portions on cloud servers with different cost
models in mobile environments. In [23], Kiani and Ansari
proposed a task scheduling scheme designed for code
partitioning over time and the hierarchical cloudlets
in a mobile edge network. Similar work includes [24],
which proposed a partial offloading technique for wireless
mobile cloud computing. In [7], Wang et al. also divided
the whole task into several small task units, taking into
account the divisibility of task, and proposed a dynamic
offloading in MEC-enabled vehicular networks, which is
similar to our work. Compared to [7], our work consid-
ers multi-severs and APs for the decision, which have not
mentioned by them. However, most of the existing work
have not considered the practical constraints about the
variable moving speed of vehicles.
Some studies about offloading and migration are

focused on user mobility predictions in mobile edge net-
works. For example, the work in [25] is to formulate
the mobility driven decision making problem for service
migration using the framework of Markov Decision Pro-
cess (MDP). By using the MDPmodel to predict, the work
[25] makes decisions whether to migrate services. In [26],
Alasmari et al. also proposed a MDP-based methodol-
ogy to intelligently make decision for optimizing multiple
objectives.
In [27], Sun et al. developed an energy-aware mobility

management scheme to optimize the total delay due to
both communication delay and computation delay under
the long-term energy consumption constraint of the user,
without requiring the future user mobility as a priory
knowledge. In [28], Gao et al. proposed joint network
selection and service placement for mobile edge comput-
ing. The authors considered the nonlinear network access
latency, switching latency, and communication latency to
minimize overall latency, and designed an online algo-
rithm to reduce frequent switching cost and balance the
access delay and communication delay. In [15], a contract-
based offloading and computation resource allocation
scheme was proposed to maximize the benefit of the
MEC service provider with consideration on the vehicle
mobility in cloud-enabled vehicular networks.
Resource sharing of access networks and edge servers

are important issues recently studied, for example the
graph-based cooperative scheduling proposed in [29], the
matrix game approach proposed in [30], P2P-enabled
decentralized edge servers approach in [21], etc. In [31],
Sardellitti et al. proposed and solved the offloading prob-
lem of joint optimization of the radio resources and

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 4 of 13

Fig. 1 Dynamic task offloading in vehicular edge computing

the computational resources in order to minimize the
overall users’ energy consumption, while meeting latency
constraints. In [32], the authors proposed an adaptive
sequential offloading game approach, where the mobile
users sequentially make offloading decisions based on the
current interference environment and available computa-
tion resources, and adjust the number of offloaded users
adaptively. Poularakis et al. studied the joint optimiza-
tion of service placement and request routing in MEC-
enabled multi-cell networks with storage-computation-
communication constraints [33].
Data security and privacy protection in the field of

edge computing have also attracted the attention of
many scholars [34, 35]. The integration of blockchain
and edge computing is becoming an important concept
that leverages their decentralized management and dis-
tributed service to meet the security, privacy protection,
scalability and performance requirements in future net-
works and systems [36]. In [37], Gai et al. proposed a
model permissioned blockchain edge model for smart
grid network (PBEM-SGN) to address the two signifi-
cant issues in smart grid, privacy protections, and energy
security, by means of combining blockchain and edge
computing techniques. In [38], the authors exploited con-
sortium blockchain and smart contract technologies to
achieve secure data storage and sharing in vehicular edge
networks and proposed a reputation-based data sharing
scheme to ensure high-quality data sharing among vehi-
cles. In [39], physical-layer assisted privacy-preserving
offloading schemes was proposed and two efficient algo-
rithms are developed to address the corresponding opti-
mization problems by exploiting the favorable structure
of the privacy-preserving offloading problem in the delay
optimal and the energy optimal scenarios. In [40], a hier-
archical blockchain-enabled federated learning algorithm

for knowledge sharing is proposed in IoVs. The hierar-
chical blockchain framework is able to not only improve
the reliability and security of knowledge sharing, but also
adapt to the large scale vehicular networks with various
regional characteristics.
Compared with these work, the difference is that we

consider a multi-cell MEC scenario, where the small cells
are densely deployed and serve multiple mobile vehicles.
We consider multi-server and multi-AP in multi-cell for
the decision, and also consider the mobility of vehicles.
The novelty in our offloading strategy is that, each access
point is equipped with an edge server, multiple access
points are included in a cell, and we study the joint opti-
mization of access points selection and task offloading
to decrease queuing delay and task execution with task
division, due to the competition for limited computation
resources.

Systemmodel and solution
As you can see, Fig. 1 shows the dynamic task offload-
ing process of vehicles in the vehicular networks based
on MEC. There are multiple available network access
points around the vehicle. At the initial time, the vehicle
is located in the upper-right corner, the TUs are offloaded
to the edge server named Edge 1. Then, the vehicle moves
to the next position along the red arrow.When this move-
ment occurs, the coverage of the surrounding edge server
will change. If the distance between the vehicle and the
edge server is too large, the QoS provided will not be
guaranteed, and the user experience will also decline.
Therefore, it needs to offload the unfinished TUs to the
new edge server to execute. As shown in this figure, Edge
4, Edge 5 and Edge 6 are three candidates, and finally the
unfinished TUs are offloaded to the edge server named
Edge 4 according to a decision.

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 5 of 13

Fig. 2 The computation offloading of moving vehicle in MEC-based vehicular networks

We consider a straight road with successive small cells
in MEC-enabled vehicular networks, and the cells are rep-
resented by a set L = {

L1cell, L
2
cell, ..., L

s
cell, ...

}
, as you can

see in Fig. 2. In order to facilitate understanding of sys-
tem models and algorithms, we list main notations in
Table 1. We assume that the cells are closely adjacent, and
their coverage does not overlap each other, and it is also
assumed that the communication coverage of the cell is
relatively small, and its coverage is about 100m to 400m
or less. The coverage radius of each cell is represented
by a set r = {r1, r2, ..., rs, ...}. There are multiple APs and
edge servers with powerful computing and storage capa-
bilities in each cell. It is assumed that there arem APs and
n edge servers in the coverage area of the cell Lscell , which
are denoted by M = {1, 2, 3, ...,m} and N = {1, 2, 3, ..., n},
respectively. An edge server in the cell can serve multi-
ple vehicles at the same time through CPU sharing, but
the computing resources allocated to each vehicle are lim-
ited. As can be seen in Fig. 3, the objective of optimization
decision is to optimally allocate tasks tom APs and n edge
servers.
We suppose that the on-board device in the vehicle has

a large computing tasks to be finished when it is moving
on the road. Due to the heterogeneity of computing tasks,
we denote the task for vehicle k as uk , and denote the com-
putation input data bits of task uk as sk , and wk represents
the CPU cycles required to process the task uk , which can
be calculated through wk = ωsk , where the parameter ω

depends on the computational complexity of the task uk .
We denote the computation capacity of on-board device
as f kl . In addition, Cj is denoted as the total computing
power of edge server j, and f jm denotes the computation
capacity allocated to the vehicle by edge server j. For the
task uk , the execution time on local device is expressed by
wk/f kl , and the execution time on edge server j is wk/f

j
m.

Taking into account the divisibility of task, we can divide
the whole task into several small TUs. By dividing the task
into small TUs, it can be accurately controlled accord-
ing to the vehicle’s speed and wireless network status. We
can make a decision on each TU whether it should be
processed locally or offloaded to the current-connected
edge server. Even if there is an interruption during the
task execution, there is no need to retransmit the whole
computing task, and only the interrupted TU needs to be
retransmitted. We assume that the size of each TU equals
to Io bits. The total number of TUs of task uk is nsk , which
is calculated by

nsk =
⌈
sk
Io

⌉
(1)

where �� is the ceil function.
As the vehicle passes through several cells, the whole

task would be finished by several edge servers in succes-
sive cells. Thus, how many TUs should be offloaded to
edge servers in each cell is the scheduling problem solved
in this paper. The maximum number of TUs that can
be completed in the cell is defined as Ns

k , and then the
amount of data that need to be processed in the cell is
given by:

Ds
k = Ns

kIo. (2)

In addition, for the maximum number of TUs Ns
k , we

need to calculate the number of TUs should be assigned
and processed in edge servers according to the conditions,
and the number of TUs processed in local. We define the
optimal offloading ratio αs

k which indicates the ratio of the
number of TUs offloaded by vehicle k to the maximum
number of TUs Ns

k in the cell Lscell.

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 6 of 13

Table 1 Notations

Symbol Definition

L The set of the cells

r The set of cells coverage radius

uk The task for vehicle k

sk The computation input data bits of task uk

wk The CPU cycles required to process the task uk

f kl The computation capacity of on-board device

Cj The total computing power of edge server j

f jm The computation capacity allocated to the vehicle by edge server j

Io The size of each TU

ri,k The maximal uplink rate assigned to the vehicle k through AP i

TAPi,k The waiting time of the vehicle k due to insufficient bandwidth of AP i

TQj,k The queuing delay of the task execution on edge server j

TCi,j The communication delay from AP i to edge server j

Ns
k The number of TUs that can be completed in the cell

αs
k The proportion of the number of TUs offloaded to the edge server

Ts,trai,k The transmission latency of the offloading task that the vehicle k needs to complete in the cell

Ts,lock The time for processing the TUs locally in the vehicle k

Ts,proj,k The time for processing the TUs offloaded by the vehicle k to the edge server j

T sk The total latency of completing the allocated computing tasks in the cell

Access point selection
When the vehicle is moving in a cell, it may be within
the coverage of multiple available APs. If the vehicle
chooses AP autonomously, it may cause resource compe-
tition and network congestion. Therefore, how to select
the appropriate AP for each vehicle is a problem we need
to consider. The vehicle needs to select an AP from the
surrounding candidates to transmit tasks. Assuming that
the maximum uplink transmission rate Rmax is limited
by the bandwidth of AP. Thus, the maximal uplink rate
assigned to the vehicle k through AP i is denoted as ri,k
which can also be derived from Shannon’s formula:

ri,k = Blog2
(
1 + pkhi,k

σ 2

)
(3)

where hi,k represents the channel gain between the vehi-
cle k and AP i, pk represents the transmission power
of vehicle k, B represents the channel bandwidth, and
σ 2 represents the transmission noise. Assuming that the
maximum transmission rate remaining in the AP i is �Ri,
if the vehicle k needs to offload task to the edge server
through the AP i, ri,k ≤ �Ri should be satisfied.
When the remaining transmission rate of AP is insuffi-

cient, we need to wait for the completion of the previous
transmission to release bandwidth resources to accommo-
date new task transmission. We assume that the waiting

time of the vehicle k due to insufficient bandwidth of AP
is denoted as TAP

i,k .

Task offloading
In our model, the computing task of the vehicle does
not have to be offloaded to the edge server close to AP.
This will reduce the load on some hot edge servers to
achieve load balancing of the whole system. At the same
time, it also helps to reduce the queuing delay of comput-
ing tasks executed on the edge server and improve QoS.
Correspondingly, an additional communication delay is
introduced due to the distance factor. We use TQ

j,k to
denote the queuing delay of the task execution on edge
server j, that is, the sum of the estimated execution time
of all tasks in the queue of edge server j and the execution
time of the task. TC

i,j indicates the communication delay
from AP i to edge server j, which is given by:

TC
i,j = βdisi,j (4)

where disi,j represents the distance between AP i and edge
server j. If the computing task of the vehicle is offloaded to
the edge server near the connected AP, we have TC

i,j = 0.

Pre-allocation algorithm in cell
Because the data size of task uk is large and the coverage of
the cell is relatively small, the whole task is separated into

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 7 of 13

Fig. 3 Joint optimization decision of network selection and task offloading

TUs and would be offloaded to several edge servers in suc-
cessive cells. For the goal of task completion in time, the
number of computing tasks completed in each cell should
be as many as possible. It is necessary to calculate the
maximal number of TUs Ns

k that the vehicle can complete
in the cell based on the available computing and network
resources in the cell, including the maximum number of
TUs that can be finished in vehicle local and themaximum
number of TUs that can be completed by edge servers. It
is assumed that the vehicle k is going to enter the cover-
age of the cell Lscell and the time that the vehicle stays in
the cell (the travel time of the vehicle in the cell) can be
calculated by

Tk,s
stay = rs

vsk
(5)

where vks represents the speed of the vehicle k in the cell.
Based on the time the vehicle stays in the cell, we can

calculate the maximum number of TUs processed in local
through:

Tk,s
stay =

ωNmax,s
loc,k Io
f kl

. (6)

The number of TUs that the vehicle offloads to the edge
server for processing is also limited, and Nmax,s

off ,k stands for
the maximal number of TUs processed in the cell. The
value ofNmax,s

off ,k depends on the time staying in the cell, the
channel conditions in the cell and the computing capacity
of edge servers. We use the average uplink rate of all APs
in the cell to represent the data transmission rate in the
cell:

rs = 1
m

m∑

i=1
Blog2

(
1 + pkhi,k

σ 2

)
. (7)

The average computing capacity of all edge servers in
the cell is calculated by Eq. (8), and the average value is

used to process offloaded tasks in the cell.

f sm = 1
n

n∑

j=1
f jm (8)

In order to ensure that there is no interruption during
the task execution, the total time spend for the offloading
task execution in edge servers must not exceed the maxi-
mum time that the vehicle stays in the cell, then we have

Nmax,s
off ,k Io
rs

+
ωNmax,s

off ,k Io
f sm

≤ Tk,s
stay. (9)

Therefore, the total number of TUs that can be calcu-
lated at most in the cell includes the maximum number
of TUs that the on-board device can perform (denoted as
Nmax,s
loc,k) and the maximum number of TUs that offloaded

to the edge server for processing (denoted as Nmax,s
off ,k),

which is expressed by

Nmax,s
k = Nmax,s

loc,k + Nmax,s
off ,k . (10)

At the same time, in order to adapt to the environment
and system changes, we set a task adjustment factor θ (θ ∈
[0, 1]), which is inversely proportional to the quality of the
wireless channel and the workload in the cell. The worse
the wireless channel quality in the cell, or the heavier the
traffic, or the larger the system workload, the smaller the
value of θ . Therefore, we obtain

Ns
k = ⌊

θsNmax,s
k

⌋
(11)

where �� is the floor function. Thus, the pre-allocation of
tasks for each cell can be obtained, which is expressed as
Nk = {

N1
k ,N

2
k ,N

3
k , ...

}
.

Adaptive task offloading strategy
The proposed adaptive task offloading consists of two
stages. In the first stage, the number of TUsNs

k assigned to
the cell that needs to be completed has been solved. The

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 8 of 13

Table 2 Parameter configuration in simulation scenario

Parameter Value

The coverage diameter of the cell (m) [100,400]

Number of edge servers in a cell [2,5]

Computing power of an edge server (MIPS) [20,60]

Computing power allocated to a vehicle (MIPS) [10,15]

On-board computing power of vehicle (MIPS) [1,5]

Data size for each task (MB) [50,300]

The size of task unit (MB) 0.1

Task complexity (Million Instructions/MB) [0.1,10]

Number of access point in a cell [2,5]

next stage aims to solve the proportion of task offloaded
to edge servers for execution in the cell.
If a vehicle offloads tasks to a nearby edge server, the

time cost consists of four parts: 1) the time for the vehi-
cle to establish a wireless connection with an AP in the
cell and upload the required data for the task to be pro-
cessed, 2) the communication delay between the AP and
the selected edge server, 3) the time the vehicle waits for
the edge server to complete task queue, 4) the time when
the result data is transferred back to the vehicle.
We define the decision variable named offloading ratio

which is denoted as αs
k ∈[0, 1], which means the propor-

tion of the number of TUs offloaded to the edge server to
the total number of TUs that need to be completed in the
cell. We easily know that when αs

k = 0, TUs are all pro-
cessed in the vehicle k locally; while when αs

k = 1, TUs
that the vehicle k needed to complete in the cell are all
offloaded to the edge server.
Since the maximal uplink rate assigned to the vehicle k

through AP i in the cell is ri,k , the transmission latency of

Fig. 4 The relationship between the vehicle’s speed and the number
of pre-allocated TUs in each cell

all offloading tasks that the vehicle k needs to complete in
the cell can be given by:

Ts,tra
i,k = αs

kN
s
kIo

ri,k
. (12)

We also define an AP selection decision variable xi,k =
{0, 1}, and xi,k = 1 indicates that the vehicle k is con-
nected to the AP i for data transmission; otherwise, xi,k =
0 means there is no connection between them. There-
fore, the AP selection strategy can be expressed as xk =
(x1,k , x2,k , ..., xm,k), restricted by

∑

i∈M
xi,k = 1, ∀i ∈ M.

If the accessing network is congested and there is a long
queue for AP to process, the AP waiting latency will occur,
which is denoted as TAP

i,k . After the edge server completes
the task, it will return the result to the corresponding vehi-
cle. Generally speaking, the data volume of the result is
very small, so the transmission time of the result from the
edge server to the vehicle can be ignored.
The time for processing the TUs locally in the vehicle k

can be expressed as follows:

Ts,loc
k = ω

(
1 − αs

k
)
Ns
kIo

f kl
. (13)

The time for processing the TUs offloaded by the vehi-
cle k to the edge server j while moving in the cell can be
expressed as follows:

Ts,pro
j,k = ωαs

kN
s
kIo

f jm
. (14)

We define edge server selection decision variables yj,k =
{0, 1}, and yj,k = 0 indicates that TUs of the vehicle
k are not offloaded to edge server j; otherwise, yj,k =
1 means TUs are offloaded to edge server j. So, the
edge server selection strategy can be expressed as yk =
(yi,k , y2,k , ..., yn,k) with the restriction of

∑

j∈N
yj,k = 1, ∀j ∈

N .
Therefore, considering the queuing latency of the AP,

the queuing latency of the edge server, the communication

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 9 of 13

Fig. 5 The relationship between the number of arriving vehicles and
the average latency of completing the pre-allocation TUs in a single
cell

latency between the edge server and the AP, the offload-
ing time to edge server j through AP i, and the execution
time in edge server j, the total latency can be given by:

Ts,off
k = TAP

i,k + Ts,tra
i,k + TC

i,j + TQ
j,k + Ts,pro

j,k . (15)

As mentioned above, the total latency of completing the
allocated computing tasks in the cell is denoted as Ts

k ,
which can be calculated by:

Ts
k = max

{
Ts,loc
k ,Ts,off

k

}
. (16)

Fig. 6 The relationship between average latency to complete the
pre-allocated tasks and task offloading ratio

Thus, the latency-minimization problem can be formu-
lated as:

minTs
k = min

∑

i∈M
∑

j∈N
max

{
Ts,off
k ,Ts,loc

k

}

= min
∑

i∈M
∑

j∈N
max

{(
xi,kTAP

i,k + xi,kTs,tra
i,k +

xi,kyj,kTC
i,j + yj,kT

Q
j,k + yj,kT

s,pro
j,k

)
,Ts,loc

k

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : xi,k = {0, 1},∀i ∈ M
C2 :

∑

i∈M
xi,k = 1,∀i ∈ M

C3 : yj,k = {0, 1},∀j ∈ N
C4 :

∑

j∈N
yj,k = 1,∀j ∈ N

C5 :
∑

f jm ≤ Cj
C6 : αs

k ∈[0, 1]
(17)

By solving the optimization problem, we can derive the
optimal AP, the optimal offloading edge server, the opti-
mal offloading ratio, and determine how to offload TUs
in each cell to avoid the interruption. Then, the minimum
time required to complete the whole task is given by:

Tk = min
∑

s
Ts
k . (18)

Solution
Now, we present the solution to the above optimization
problems. It can be seen from Eq. (17) that the problem
is a mixed integer programming (MIP) problem, which is
to solve AP selection, task offloading, and task offloading
ratio. In the solving process, we assume that the AP selec-
tion strategy is xk = x∗

k and the task offloading strategy
is yk = y∗

k , then the original problem becomes a con-
vex optimization problem about αs

k , and the optimization
could be transformed into a function as follows:

f (αs
k) = min

∑

i∈M
∑

j∈N
max

{(
x∗
i,kT

AP
i,k + x∗

i,kT
s,tra
i,k +

x∗
i,ky

∗
j,kT

C
i,j + y∗

j,kT
Q
j,k + y∗

j,kT
s,pro
j,k

)
,Ts,loc

k

}

= min
∑

i∈M
∑

j∈N
max

{(
x∗
i,kT

AP
i,k + x∗

i,k
αs
kN

s
kIo

ri,k +

x∗
i,ky

∗
j,kT

C
i,j + y∗

j,kT
Q
j,k + y∗

j,k
ωαs

kN
s
kIo

f jm

)
, ω(1−αs

k)N
s
kIo

f kl

}

(19)

We define

g
(
αs
k
) = x∗

i,kT
AP
i,k + x∗

i,k
αs
kN

s
kIo

ri,k + x∗
i,ky

∗
j,kT

C
i,j

+y∗
j,kT

Q
j,k + y∗

j,k
ωαs

kN
s
kIo

f jm

(20)

u
(
αs
k
) = ω

(
1 − αs

k
)
Ns
kIo

f kl
(21)

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 10 of 13

Fig. 7 The relationship between average task execution delay and
task offloading ratio under different vehicle congestion conditions

Then, we have

f (αs
k) =

⎧
⎪⎨

⎪⎩

min
∑

i∈M
∑

j∈N
u

(
αs
k
)
g
(
αs
k
) ≤ u

(
αs
k
)

min
∑

i∈M
∑

j∈N
g
(
αs
k
)
g
(
αs
k
)

> u
(
αs
k
) (22)

It can be seen from Eq. (22) that g
(
αs
k
)
and u

(
αs
k
)
are

linear functions of αs
k . g

(
αs
k
)
is a monotone increasing

function of αs
k , and u

(
αs
k
)
is a monotone decreasing func-

tion of αs
k . Thus, we can easily find that the optimal task

offloading ratio α
s,bt
k to minimize task execution time,

when the AP selection strategy is xk = x∗
k and the task

offloading strategy is yk = y∗
k . Since the number of APs

and edge servers in a cell is limited, we can traversal all
the combinations of APs and edge servers to obtain the
optimal task offloading ratio in this case. Finally, through
the comparison of different combinations, the optimal
solution is obtained.

Simulation and result analysis
In this section, we introduce simulation scenarios, includ-
ing parameter settings. Then, we analyze the impact
of several important parameters and discuss the per-
formance of the proposed scheduling scheme through
simulation results.

Simulation scenarios
The simulation experiment in this paper is conducted
using an edge scheduler written in Java, which can sim-
ulate the vehicle entering a series of closely adjunct cells
(the coverage of the cells does not overlap each other).
During the experiment, we assume vehicles entering 7
successive cells L1cell, L

2
cell, ...L

7
cell, and the diameter cov-

erage is 100m, 120m, 150m, 230m, 200m, 250m, 310m,
respectively. The number of arriving vehicles is [1,40],
and the speed range is [12,34]m/s. Then, we perform the

task pre-allocation algorithm, comprehensively consider-
ing the vehicle speed, the range of each cell, the commu-
nication capability of the network access points and the
computing power of the edge servers in the cell, etc., to
predict the amount of tasks that the vehicle can execute
in each cell. After the vehicle enters each cell, the adap-
tive offloading strategy is invoked, considering the load
status of each network access point and MEC server in
the current cell, to find the optimal network access point,
offloading edge server and the optimal offloading ratio.
Simulation experiment parameters are detailed in the fol-
lowing Table 2. The value for these parameters (except the
size of task unit) is a random value in an interval. The
computing power of edge server and vehicle is measured
in million instructions per second (MIPS).

Result of performance evaluation
Figure 4 shows the relationship between the vehicle’s
speed and the number of pre-allocated TUs in three cells
L1cell, L

2
cell, L

3
cell in the head. The number of pre-allocated

TUs in different cells is different, because the communica-
tion and computing capacity in each cell is different. It can
also be seen from Fig. 4 that as the vehicle speed increases,
the number of pre-allocated TUs in each cell decrease
accordingly. This is because the increase in vehicle speed
will reduce the time vehicles stay in the cell, which will
cause task offloading time becomes smaller. Therefore,
the number of pre-allocated TUs in each cell is not static,
it changes dynamically with the change of vehicle speed.
Figure 5 shows the relationship between different num-

ber of arriving vehicles and the average latency of com-
pleting the pre-allocated TUs in three cells L1cell, L

2
cell, L

3
cell

in the head. The average data size of the vehicle task Sk is
set to 150MB, and the average vehicle speed is 20m/s. In
the process of task offloading execution, the vehicle may

Fig. 8 Average task completion time of different offloading strategies
under different traffic status

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 11 of 13

Fig. 9 Average task completion time of different offloading strategies
under different task data sizes

pass through multiple cells. It can be seen in Fig. 5 that
as traffic becomes heavy, the latency of completing pre-
allocated TUs in the cell also increases. This is because
with the increase in the number of vehicles entering the
cells, the pressure of the APs and edge servers in the cell
is also increasing, resulting in the delay of task offloading
and the task queue in edge servers, which increases the
total task competing latency.
Figure 6 shows when the average vehicle speed is 20m/s,

the average vehicle task size Sk is 150MB, and the vehi-
cle passes through three cells L1cell, L

2
cell, L

3
cell, the task

execution latency in the three cells in the case of differ-
ent task offloading ratio. Figure 7 shows the relationship
between average task execution delay and task offloading
ratio under different vehicle congestion conditions when
the average vehicle speed is 20m/s and the average vehicle
task size Sk is 150MB. Through comparison we found our
adaptive method is superior to all other schemes (offload-
ing ratio is 0%, 25%, 50%, 75%, 100%), and can determine
the optimal task offloading ratio to achieve minimizing
latency.
In order to validate the performance of the adaptive task

offloading strategy proposed in this paper, we compare
our proposed strategy (M3 strategy) with the other two
strategies: M1 strategy and M2 strategy.
(1)M1 strategy: After task pre-allocation in the cell has

been completed, when the vehicle selects the AP in the
cell, the AP with the smallest waiting latency is selected
to connect, and the task is offloaded to the nearby edge
server, without task migrations.
(2)M2 strategy: After task pre-allocation in the cell has

been completed, when the vehicle selects the edge server
for offloading, the edge server with the smallest queu-
ing latency is selected for offloading, and the AP near the
selected edge server is connected.

(3) M3 strategy: our proposed adaptive task offloading
strategy.
Figure 8 shows the performance comparison of three

different offloading strategies (the adaptive offloading
strategy proposed in this paper and M1/M2 strategy)
under different traffic situations. Figure 9 represents per-
formance comparison under different vehicle task data
sizes. Comparison results indicate that our proposed
adaptive offloading strategy outperforms others.
Figure 10 presents the impact of different offloading

strategies on the average task completion time under dif-
ferent vehicle speeds, when the number of arriving vehi-
cles is 20 and the average vehicle task size Sk is 150MB.
Through observation we can find that the strategy we pro-
posed brings less task execution delay than others. At the
same time, we can see in the figure that as the vehicle
speed increases, the average task completion delay expe-
riences a process of falling first and then rising. This is
because if the vehicle speed is slow, the vehicle stays in a
cell for a long time, which will cause a certain load pres-
sure on the edge server in the cell. When the vehicle speed
is relatively fast, the vehicle is traveling between different
cells, which will cause frequent pre-assigned task uploads
and a long waiting time.

Conclusion
This paper discusses and studies the problem of task
offloading in vehicular edge computing environment. In
order to solve the problem of service interruption and
low QoS caused by the strong mobility of vehicles, a
TUs pre-allocation algorithm in the cell has been pro-
posed. In existing work, the influence of network access
point selection on task execution latency has been often
ignored. Since the access network and edge servers are

Fig. 10 Average task completion time of different offloading
strategies under different vehicle speed

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 12 of 13

often to be overloaded, the commonly used task offload-
ingmethod cannot guarantee the user’s QoS. In this paper,
we study the joint optimization of network selection and
task offloading, and propose an adaptive task offload-
ing strategy. The simulation results have proved that the
proposed adaptive offloading strategy has a good perfor-
mance improvement in terms of task latency and response
performance of the system.
In this paper, the scenario we consider is a one-way

straight road with no intersection and slow speed changes,
but the actual road scene is very complicated. The vehi-
cle may also accelerate, decelerate, stop, etc. In future
work, we will consider more complex road and vehicle
movements, and establish a more accurate system model,
so that our proposed pre-allocation algorithm and adap-
tive offloading strategy can adapt to more complex road
environments.

Abbreviations
MEC: Mobile edge computing; IoT: Internet of things; RAN: Radio access
network; RSUs: Roadside units; AP: Access point; AR: Augmented reality; TUs:
Task units; QoS: Quality of service; V2V: Vehicle-to-vehicle; MDP: Markov
decision process; MIP: Mixed integer programming; MIPS: Million instructions
per second

Acknowledgements
The authors would like to thank all anonymous reviewers for their invaluable
comments.

Authors’ contributions
This paper is completed under the supervision of author Bing Tang. Lujie Tang
wrote the paper. Feiyan Guo is responsible for the technical architecture
design, Lujie Tang is responsible for the experiment, and Li Zhang is
responsible for the images. The grammar of the paper was reviewed and
modified by Haiwu He. Finally, Bing Tang gives some modification
suggestions. All authors have read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China
under grant no. 61872138 and 61602169, the National Key R&D Program of
China under grant no. 2018YFB1402800, and the Natural Science Foundation of
Hunan Province under grant no. 2018JJ2135, as well as the Scientific Research
Fund of Hunan Provincial Education Department under grant no. 18A186.

Availability of data andmaterials
The data used to support the findings of this study are available from the
corresponding author upon request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Computer Science and Engineering, Hunan University of Science
and Technology, 411201 Xiangtan, China. 2Shandong Computer Science
Center (National Supercomputer Center in Jinan), 250014 Jinan, China.

Received: 31 July 2020 Accepted: 23 February 2021

References
1. Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture

and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

2. Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative mobile
edge computing in 5g networks: New paradigms, scenarios, and
challenges. IEEE Commun Mag 55(4):54–61

3. Ksentini A, Frangoudis PA (2020) Toward slicing-enabled multi-access
edge computing in 5G. IEEE Netw 34(2):99–105

4. Schwab J, Hill A, Jararweh Y (2020) Edge computing ecosystem support
for 5G applications optimization. In: Pillai P, Lv Q (eds). Proceedings of the
21st International Workshop on Mobile Computing Systems and
Applications. ACM, New York. p 103. https://doi.org/10.1145/3376897.
3379166

5. Boukerche A, Grande RED (2018) Vehicular cloud computing:
Architectures, applications, and mobility. Comput. Networks 135:171–189

6. Raza S, Wang S, Ahmed M, Anwar MR (2019) A survey on vehicular edge
computing: Architecture, applications, technical issues, and future
directions. Wirel Commun Mob Comput 2019:3159762. https://doi.org/
10.1155/2019/3159762

7. Wang H, Li X, Ji H, Zhang H (2018) Dynamic offloading scheduling scheme
for MEC-enabled vehicular networks. In: 2018 IEEE/CIC International
Conference on Communications in China (ICCC Workshops). IEEE, New
York. pp 206–210. https://doi.org/10.1109/ICCChinaW.2018.8674508

8. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and
challenges. IEEE Internet Things J 3(5):637–646

9. Shaukat U, Ahmed E, Anwar Z, Xia F (2016) Cloudlet deployment in local
wireless networks: Motivation, architectures, applications, and open
challenges. J Netw Comput Appl 62:18–40

10. Stojmenovic I, Wen S (2014) The fog computing paradigm: Scenarios and
security issues. In: Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems Vol. 2. pp 1–8. https://doi.
org/10.15439/2014F503

11. Ahmed E, Rehmani MH (2017) Mobile edge computing: Opportunities,
solutions, and challenges. Futur Gener Comput Syst 70:59–63

12. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile
edge computing: The communication perspective. IEEE Commun Surv
Tutor 19(4):2322–2358

13. Liu Y, Peng M, Shou G, Chen Y, Chen S (2020) Toward edge intelligence:
Multiaccess edge computing for 5G and internet of things. IEEE Internet
Things J 7(8):6722–6747

14. Wan S, Li X, Xue Y, Lin W, Xu X (2020) Efficient computation offloading for
internet of vehicles in edge computing-assisted 5G networks. J
Supercomput 76(4):2518–2547

15. Zhang K, Mao Y, Leng S, Vinel AV, Zhang Y (2016) Delay constrained
offloading for mobile edge computing in cloud-enabled vehicular
networks. In: 2016 8th International Workshop on Resilient Networks
Design and Modeling (RNDM). IEEE, New York. pp 288–294

16. Zhang K, Mao Y, Leng S, Maharjan S, Zhang Y (2017) Optimal delay
constrained offloading for vehicular edge computing networks. In: 2017
IEEE International Conference on Communications (ICC). IEEE, New York.
pp 1–6. https://doi.org/10.1109/ICC.2017.7997360

17. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y
(2016) Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks. IEEE Access 4:5896–5907

18. Hao Y, Chen M, Hu L, Hossain MS, Ghoneim A (2018) Energy efficient task
caching and offloading for mobile edge computing. IEEE Access
6:11365–11373

19. Zhang J, Hu X, Ning Z, Ngai ECH, Zhou L, Wei J, Cheng J, Hu B (2018)
Energy-latency tradeoff for energy-aware offloading in mobile edge
computing networks. IEEE Internet Things J 5(4):2633–2645

20. Tran TX, Pompili D (2019) Joint task offloading and resource allocation for
multi-server mobile-edge computing networks. IEEE Trans Veh Technol
68(1):856–868

21. Tang W, Zhao X, Rafique W, Qi L, Dou W, Ni Q (2019) An offloading
method using decentralized P2P-enabled mobile edge servers in edge
computing. J Syst Archit 94:1–13

22. Wu H, Wolter K (2015) Software aging in mobile devices: Partial
computation offloading as a solution. In: 2015 IEEE International
Symposium on Software Reliability Engineering Workshops. IEEE
Computer Society, New York. pp 125–131. https://doi.org/10.1109/
ISSREW.2015.7392057

23. Kiani A, Ansari N (2018) Optimal code partitioning over time and
hierarchical cloudlets. IEEE Commun Lett 22(1):181–184

https://doi.org/10.1145/3376897.3379166
https://doi.org/10.1145/3376897.3379166
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1109/ICCChinaW.2018.8674508
https://doi.org/10.15439/2014F503
https://doi.org/10.15439/2014F503
https://doi.org/10.1109/ICC.2017.7997360
https://doi.org/10.1109/ISSREW.2015.7392057
https://doi.org/10.1109/ISSREW.2015.7392057

Tang et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:23 Page 13 of 13

24. Mazza D, Tarchi D, Corazza GE (2014) A partial offloading technique for
wireless mobile cloud computing in smart cities. In: European Conference
on Networks and Communications. IEEE, New York. pp 1–5. https://doi.
org/10.1109/EuCNC.2014.6882623

25. Wang S, Urgaonkar R, Zafer M, He T, Chan KS, Leung KK (2015) Dynamic
service migration in mobile edge-clouds. In: Proceedings of the 14th IFIP
Networking Conference. IEEE Computer Society, New York. pp 1–9.
https://doi.org/10.1109/IFIPNetworking.2015.7145316

26. Alasmari KR, II RCG, Alam M (2018) Mobile edge offloading using Markov
decision processes. In: 2018 International Conference on Edge
Computing (EDGE). Springer, Switzerland. pp 80–90. https://doi.org/10.
1007/978-3-319-94340-4_6

27. Sun Y, Zhou S, Xu J (2017) EMM: energy-aware mobility management for
mobile edge computing in ultra dense networks. IEEE J Sel Areas
Commun 35(11):2637–2646

28. Gao B, Zhou Z, Liu F, Xu F (2019) Winning at the starting line: Joint
network selection and service placement for mobile edge computing. In:
2019 IEEE Conference on Computer Communications. IEEE, New York.
pp 1459–1467. https://doi.org/10.1109/INFOCOM.2019.8737543

29. Zheng K, Liu F, Zheng Q, Xiang W, Wang W (2013) A graph-based
cooperative scheduling scheme for vehicular networks. IEEE Trans Veh
Technol 62(4):1450–1458

30. Yu R, Ding J, Huang X, Zhou M, Gjessing S, Zhang Y (2016) Optimal
resource sharing in 5G-enabled vehicular networks: A matrix game
approach. IEEE Trans Veh Technol 65(10):7844–7856

31. Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimization of radio and
computational resources for multicell mobile-edge computing. IEEE
Trans Signal Inf Process over Netw 1(2):89–103

32. Deng M, Tian H, Lyu X (2016) Adaptive sequential offloading game for
multi-cell mobile edge computing. In: 23rd International Conference on
Telecommunications. IEEE, New York. pp 1–5. https://doi.org/10.1109/ICT.
2016.7500395

33. Poularakis K, Llorca J, Tulino AM, Taylor I, Tassiulas L (2019) Joint service
placement and request routing in multi-cell mobile edge computing
networks. In: 2019 IEEE Conference on Computer Communications. IEEE,
New York. pp 10–18. https://doi.org/10.1109/INFOCOM.2019.8737385

34. Zhang J, Chen B, Zhao Y, Cheng X, Hu F (2018) Data security and
privacy-preserving in edge computing paradigm: Survey and open issues.
IEEE Access 6:18209–18237

35. Qu X, Hu Q, Wang S (2020) Privacy-preserving model training architecture
for intelligent edge computing. Comput Commun 162:94–101

36. Yang R, Yu FR, Si P, Yang Z, Zhang Y (2019) Integrated blockchain and
edge computing systems: A survey, some research issues and challenges.
IEEE Commun Surv Tutor 21(2):1508–1532

37. Gai K, Wu Y, Zhu L, Xu L, Zhang Y (2019) Permissioned blockchain and
edge computing empowered privacy-preserving smart grid networks.
IEEE Internet Things J 6(5):7992–8004

38. Kang J, Yu R, Huang X, Wu M, Maharjan S, Xie S, Zhang Y (2019)
Blockchain for secure and efficient data sharing in vehicular edge
computing and networks. IEEE Internet Things J 6(3):4660–4670

39. He X, Jin R, Dai H (2019) Physical-layer assisted privacy-preserving
offloading in mobile-edge computing. In: 2019 IEEE International
Conference on Communications. IEEE, New York. pp 1–6. https://doi.org/
10.1109/ICC.2019.8761166

40. Chai H, Leng S, Chen Y, Zhang K (2020) A hierarchical blockchain-enabled
federated learning algorithm for knowledge sharing in internet of
vehicles. IEEE Trans Intell Transp Syst:1–12. https://doi.org/10.1109/TITS.
2020.3002712

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/EuCNC.2014.6882623
https://doi.org/10.1109/EuCNC.2014.6882623
https://doi.org/10.1109/IFIPNetworking.2015.7145316
https://doi.org/10.1007/978-3-319-94340-4_6
https://doi.org/10.1007/978-3-319-94340-4_6
https://doi.org/10.1109/INFOCOM.2019.8737543
https://doi.org/10.1109/ICT.2016.7500395
https://doi.org/10.1109/ICT.2016.7500395
https://doi.org/10.1109/INFOCOM.2019.8737385
https://doi.org/10.1109/ICC.2019.8761166
https://doi.org/10.1109/ICC.2019.8761166
https://doi.org/10.1109/TITS.2020.3002712
https://doi.org/10.1109/TITS.2020.3002712

	Abstract
	Keywords

	Introduction
	Related work
	System model and solution
	Access point selection
	Task offloading
	Pre-allocation algorithm in cell
	Adaptive task offloading strategy
	Solution

	Simulation and result analysis
	Simulation scenarios
	Result of performance evaluation

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author details
	References
	Publisher's Note

