
Journal of Cloud Computing:
Advances, Systems and Applications

Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems
and Applications           (2021) 10:28 
https://doi.org/10.1186/s13677-021-00243-9

RESEARCH Open Access

A novel approach for IoT tasks
offloading in edge-cloud environments
Jaber Almutairi1 and Mohammad Aldossary2*

Abstract

Recently, the number of Internet of Things (IoT) devices connected to the Internet has increased dramatically as well as
the data produced by these devices. This would require offloading IoT tasks to release heavy computation and storage
to the resource-rich nodes such as Edge Computing and Cloud Computing. Although Edge Computing is a promising
enabler for latency-sensitive related issues, its deployment produces new challenges. Besides, different service
architectures and offloading strategies have a different impact on the service time performance of IoT applications.
Therefore, this paper presents a novel approach for task offloading in an Edge-Cloud system in order to minimize the
overall service time for latency-sensitive applications. This approach adopts fuzzy logic algorithms, considering
application characteristics (e.g., CPU demand, network demand and delay sensitivity) as well as resource utilization and
resource heterogeneity. A number of simulation experiments are conducted to evaluate the proposed approach with
other related approaches, where it was found to improve the overall service time for latency-sensitive applications
and utilize the edge-cloud resources effectively. Also, the results show that different offloading decisions within the
Edge-Cloud system can lead to various service time due to the computational resources and communications types.

Keywords: Edge-cloud computing, Edge orchestrator, Resource management, Latency sensitivity, Task offloading,
Scheduling, Internet of things

Introduction
In recent years, the Information Technology (IT) sector
has developed at a massive rate, in which more than 50
billion Internet of Things (IoT) devices will be connected
to the internet in the coming years [1–4]. In addition, the
availability of stable and high-speed internet as well as
communication technologies lead to the proliferation of
complex, and computation-intensive IoT applications that
often generate and process large volumes of data. Such
applications include Augmented Reality (AR), Online
Gaming and processing of Video Streaming [5]. This
immense growth, therefore, requires platforms to support
the increased amount of IoT devices and to organize and
process the produced data. However, the limited power
and computational capabilities (i.e., CPU and memory)

*Correspondence: mm.aldossary@psau.edu.sa
2Department of Computer Science, College of Arts and Science, Prince Sattam
bin Abdulaziz University, Al-Kharj, Saudi Arabia
Full list of author information is available at the end of the article

further restrict the execution of such resource-demanding
applications on the devices [6]. To alleviate these lim-
itations and meet the communication/processing delay
requirement, complex computations can be offloaded to
more resourceful devices.
Cloud Computing is considered viable and promising

technology to support this growth by enabling on-demand
access to a massive pool of computation resources for ser-
vices process and data analytics [7, 8]. Notwithstanding
this, cloud computing resources are centralized and far
away from IoT devices where the enormous amount of
data generated by IoT devices is required to be transferred
and processed in a real-time manner. Therefore, the cloud
computing paradigm is not suitable for addressing low-
latency, real-time interaction and high Quality of Service
(QoS) applications due to network delay [9].
To address the cloud computing limitations, edge com-

puting paradigm has been emerged where it provides
a pool of virtually operated computational and storage

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00243-9&domain=pdf
http://orcid.org/0000-0001-6772-700X
mailto: mm.aldossary@psau.edu.sa
http://creativecommons.org/licenses/by/4.0/


Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 2 of 19

capabilities at the edge of network that are proximity
to IoT devices and thereby fulfill the latency gaps
[10, 11]. In addition, it provides the opportunity to
serve better streaming services, which are both latency-
sensitive and bandwidth-intensive such as Google Sta-
dia and Netflix. Moreover, edge computing architec-
ture avoids uploading/downloading of massive files and
prevents pre-processing of offloading tasks, which con-
tributes to minimize the overall service time [12, 13].
However, managing edge-cloud computing resources effi-
ciently and handling computation tasks for latency-
sensitive applications is a critical issue [14] which could
require proposing an efficient task scheduling technique
to enhance the overall service performance and minimize
the delay of offloaded tasks.
Furthermore, there are several parameters that influ-

ence proposing a realistic model of scheduling the
offloaded tasks on the edge-cloud system. These param-
eters can be classified into two main categories namely
infrastructure characteristics and application characteris-
tics. The first category (i.e., Infrastructure characteristics)
deals with the features related to the infrastructure such
as allocating the appropriate resource for a specific task,
managing the utilization level of the edge server and the
network conditions. For example, CPU utilization could
vary depending on the assigned task and whether the
number of IoT devices increases in a shared network,
which may lead to fluctuations in network bandwidth.
Whereas, the second category (i.e., application character-
istics) manages the characteristics of IoT application tasks
such as computation demand, required transfer data for
uploading and downloading, and the required deadline to
complete tasks.
Note that, regarding the previous explanation, the

realistic model for scheduling the offloaded tasks on
the edge-cloud system considers different parameters
in terms of application characteristics (computational,
communications and latency), resource heterogeneity
and resource utilization which can be formulated as
a dynamic multi-objective optimization problem, and
can vary over time [15]. However, it is a challenge
to implement an optimal scheduling approach and
gets accurate mathematical models [16] in edge-cloud
environment due to its complexity, uncertainty and vague-
ness [17] where it changes dynamically and unpre-
dictably. For instance, the number of IoT devices could
be increased or decreased in a specific area due to
IoT mobility, which has an impact on the load of the
edge node and the shared network. Also, the incoming
tasks are not known in advance, which requires a sys-
tem to handle them in real-time. Furthermore, the edge-
cloud environments consist of a set of heterogeneous
resources (e.g., different computation resource capabili-
ties).

In this regard, several and significant research efforts
have been intended to address the latency challenges
and resource heterogeneity in the edge-cloud environ-
ment. For example, researchers in [18–20] have consid-
ered the computational and communication parameters
in order to enhance the overall latency. Elsewhere, [5, 21]
have investigated the impact of resource heterogeneity
in the edge-cloud environment and its role in enhancing
the end-to-end service time. Additionally, [22–24] have
focused on load balancing and server utilization in Edge-
Cloud systems in an effort to avoid overloaded edge nodes,
which affect application service time. However, most of
the studies are designed to meet a specific scenario or for
a particular application, which makes them less adaptive
and scalable [25]. In addition, the complexity and com-
putational time needed for solving this type of problems
are not addressed, where the resources at the edge involve
computational constraints. Moreover, most of the pro-
posed approaches use traditional methods for solving this
problem which assumes that all the parameters of an opti-
mization model are precisely known and could add extra
overhead at the edge nodes, thereby affects the ability to
meet stringent service requirements for latency-sensitive
applications [15].
Fuzzy Logic (FL) is a method of reasoning that seems

closer to the way our brains work. The concept of fuzzy
logic is to abstract the problem complexity to a level that
can be understood. It helps to model imprecision and
uncertainty of the system, where it can define the impre-
cise information in a more logical and meaningful fashion
[26]. It can also handle system uncertainty by dealing with
many input and output variables and can represent the
problem with simple if-then rules. Many researchers in
the field of the distributed systems use fuzzy logic to deal
with the challenges caused by vagueness, uncertainty and
the dynamicity of the environment [27]. Therefore, in this
study, Fuzzy Logic is considered to be among the most fea-
sible solutions for a multi-objective optimization problem
when the activity of multiple parameters is significant. It
can be easily adapted to the dynamicity of computational
resources and application parameters as well as providing
scalability within the context of the system. It also averts
the computational complexity and can provide decisions
very quickly [28]. As a consequence, fuzzy logic has been
adopted in this research to determine where to offload
the tasks based on application and system parameters.
To the best of our knowledge, this is one of the early
attempts to design and implement such a system with
regards to application’s demands, edge-cloud resource uti-
lization and resource heterogeneity by adopting fuzzy
logic.
The aim of this research is to develop a novel approach

for offloading tasks to handle the requirements of latency-
sensitive IoT applications and efficiently utilizing the



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 3 of 19

resources in Edge-Cloud environments. Also, the pro-
posed approach is used for scheduling offloading tasks
in order to reduce the overall service time and improve
resource utilization. The contributions reported in this
study can be summarized as follows:

• Introduce an Edge-Cloud system architecture that
includes the required components to support
scheduling offloading tasks of IoT applications;

• Propose a novel approach that adopts the fuzzy logic
technique, which considers application
characteristics (e.g., CPU demand, network demand
and delay sensitivity) as well as resource utilization
and resource heterogeneity in order to minimize the
overall time of latency-sensitive applications;

• Provide a set of algorithms for offloading tasks
scheduling in order to enhance service time and
resource utilization in Edge-Cloud environments;

• An evaluation of the proposed approach for
scheduling offloading tasks decisions within the edge-
cloud system, considering application characteristics,
resource utilization and resource heterogeneity.

The remainder of this paper is organized as follows: A
thorough discussion of the related work is presented in
“Related work” section. “Proposed system architecture”
section presents the system architecture that supports
scheduling offloading tasks of IoT applications, fol-
lowed by the descriptions of the required components
and their interactions within the proposed architecture.
“Tasks scheduling approach for minimum latency” section
presents a scheduling approach for minimum latency.
“Task selection phase based on resource type” section
presents the task selection phase based on resource
type, followed by the experimental implementation and
results discussion in “Implementation” section. Finally,
“Conclusion and future work” section concludes this
paper and discusses the future work.

Related work
Computation offloading is not a new paradigm; it is widely
used in the area of Cloud Computing. Offloading transfers
computations from the resource-limited mobile device to
resource-rich Cloud nodes in order to improve the execu-
tion performance of mobile applications and the holistic
power efficiency. Users devices are evenly located at the
edge of the network. They could offload computation to
Edge and Cloud nodes via Wireless Local Area Network
(WLAN) or 4G/5G networks. Generally, if a single edge
node is insufficient to deal with the surging workloads,
other edge nodes or cloud nodes are ready for assisting
such an application. This is a practical solution to support
IoT applications by transferring heavy computation tasks
to powerful servers in the Edge-Cloud system. Also, it is
used to overcome the limitations of IoT devices in terms

of computation power (e.g., CPU and memory) and insuf-
ficient battery. It is one of the most important enabling
techniques of IoT, because it allows performing a sophis-
ticated computational task more than their capacity [29].
Thus, the decisions of computational offloading in the
context of IoT can be summarized as follows:

• First, whether the IoT device decides to offload a
computational task or not. In this case, several factors
could be considered, such as the required
computational power and transferred data.

• Second, if there is a need for offloading, do partial
offloading or full offloading. Partial offloading refers
to the part of the tasks that will be processed locally
at the IoT device and other parts in the Edge-Cloud
servers. Also, factors such as task dependency and
task priority can be considered in this case. Full
offloading means, the whole application will be
processed remotely in the Edge-Cloud servers [30].

In terms of the objectives of computation offloading
in the context of Edge Computing, it can be classified
into two categories; objectives that focus on application
characteristics and objectives that focus on Edge-Cloud
resources. Several studies [31–34] had aimed to minimize
service latency, energy consumption and mandatory cost,
as well as maximize total revenue and resource utilization.
In fact, scheduling offloading tasks is a challenging issue
in the Edge-Cloud Computing paradigm, since it con-
siders several trade-offs from application requirements
(e.g., reduce latency) and system requirements (e.g., max-
imize resource utilization). Thus, developing an efficient
resource management technique, that meets the require-
ments of both application and system, is an active area of
research.
In the following subsections, some of the studies con-

ducted on task offloading in Edge-Cloud environments to
reduce the latency and maximize resource utilization, are
reviewed and discussed.

Task offloading based on application characteristics
As stated in [5, 20], scheduling offloaded tasks that
focused on application characteristics is considered sig-
nificantly important, especially, with the increase of IoT
applications. Therefore, this subsection presents the con-
ducted studies on task offloading, which mainly focuses
on application characteristics including (computation and
communication demands, and latency-sensitivity).

Computation and communication demands
There are many ongoing research projects focusing on
the task computation and communication demands of
IoT applications. For example, Wang et al. [35] proposed
an online approximation algorithm that mainly objective
to balance the load and minimizing resource utilization



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 4 of 19

in order to enhance application performance. This work
considers the attributes of computational and communi-
cations for homogenous resources, without considering
the service latency. Rodrigues et al. [36], presented a hyper
method for minimizing service latency and reduce power
consumption. This method aims to reduce the commu-
nication and computational delays by migrating the VM
to an unloaded server. The authors investigate the impact
of tasks computational and communication demands.
They evaluate their approach under realistic conditions
by mathematical modelling. However, their method does
not consider the application delay constraints as well as
the offloading to the cloud. Deng et al. [37], proposed
an approximate approach for minimizing network latency
and power consumption by allocating workload between
Fog and Cloud. However, their approach does not opti-
mize the trade-off between all mentioned objectives (e.g.,
computational delay and resource utilization).
Zeng et al. [38] designed a strategy for task offloading

that aims to minimize the completion time. In their work,
both computation time and transmission time are con-
sidered. Also, the authors investigate the impact of other
factors such as I/O interrupt requests and storage activi-
ties. However, delay-constraints applications and resource
heterogeneity are not considered in their work. Fan et
al. [39] designed an allocation scheme that aims to min-
imize service latency for IoT applications, by taking into
account both computation and communication delays.
Furthermore, the authors investigate the impact of the
overloaded VM on processing time, and they evaluated
their work with different types of applications. However,
the proposed method does not show the effectiveness of
the heterogeneity of the VMs in terms of service time and
also does not consider the latency-sensitive application.

Latency sensitivity
In terms of application latency-sensitivity, a number of
studies are conducted in order to enhance the overall ser-
vice time in the Edge-Cloud environment. For instance,
Mahmud et al. [20] proposed a latency-aware policy
that aims to meet the required deadlines for offload-
ing tasks. This approach considering task dependency as
well as the computational and communication require-
ments. Also, the resource utilization at the edge level
is considered. However, the issue of resource hetero-
geneity is not addressed in their work. Azizi et al. [40]
designed a priority-based service placement policy that
prioritizes tasks with deadlines; thus, the nearest dead-
lines are scheduled first. Further, their work considers
both computational and communication demands. How-
ever, their evaluation does not address the issue when the
system has multi IoT devices with different resource uti-
lization. Sonmez et al. [41] presented an approach for task
offloading that targets latency-sensitive applications. This

approach is based on fuzzy logic, which focused on delay
as a key factor along with computational and communi-
cation demands. Nevertheless, in this approach resource
heterogeneity is not considered.

Task offloading based on edge-cloud resources
This subsection presents the literature on offloading tasks
and mainly focused on resource utilization and resource
heterogeneity as main objectives.

Resource utilization
Scheduling offloading tasks based on resource utilization
or resource heterogeneity has received considerable crit-
ical attention from many researchers. For example, Nan
et al. [42] developed an online optimization algorithm for
offloading tasks that aim to minimize the cost of renting
Cloud services by utilizing resources at the edge using the
Lyapunov technique. Further, their algorithm guarantees
the availability of edge resources and ensures processing
the task within the required time. Yet, this algorithm does
not consider the impact of computational and commu-
nication demands for latency-sensitive applications. Xu
et al. [43] proposed a model for resource allocation that
aims to maximize resource utilization and reduce task
execution latency, as well as, reducing the dependability
on the cloud in order to minimize Cloud cost. However,
this work only considers resource utilization and does
not refer to resource heterogeneity. Besides, application
uploading and downloading data are not addressed in
their work, which plays a significant role in overall service
time. Li and Wang [44] introduced a placement approach
that aims to reduce edge nodes’ energy consumption and
maximize resource utilization. They evaluated the pro-
posed algorithm through applied numerical analysis based
on the Shanghai Telecom dataset. However, their work
does not provide any information regarding the appli-
cation characteristics (e.g., computation, communication
and delay-sensitivity).

Resource heterogeneity
Resource heterogeneity for the offloading decision plays
a critical role to enhance the performance of service time
in the Edge-Cloud environment. Thus, a number of stud-
ies have investigated the impact of resource heterogeneity
on service time. For instance, Scoca et al. [45] proposed a
scour-based algorithm for scheduling offloading tasks that
considers both computation and communication param-
eters. Furthermore, their algorithm considers a heteroge-
neous VMs and sorts heavy tasks to be allocated to the
most powerful VM. However, their algorithm does not
consider server utilization as key parameters, which could
affect the performance of service time. Roy et al. [46]
proposed a strategy for task allocation that allocates dif-
ferent application tasks to an appropriate edge server by



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 5 of 19

considering resource heterogeneity. This approach aims
to reduce the execution latency as well as balancing the
load between edge nodes. Yet, task communication time
is not considered in this approach. Taneja et al. [47]
proposed a resource-aware placement for IoT offloading
tasks. Their approach ranks the resources at the edge with
their capabilities and then assigns tasks to a suitable server
based on the task’s requirements (e.g., CPU, RAM and
Bandwidth). However, this method focused on improving
the performance of application service time, but without
explicitly considering application latency-sensitivity.
With the dynamicity of IoT workload demands, Edge-

Cloud service providers aimed to find a balance between
utilizing Edge-Cloud resources efficiently and satisfying
the QoS objectives of IoT applications. Consequently,
designing a new task offloading mechanism can con-
tribute to enhancing resource utilization and support-
ing the latency-sensitive application requirements in the
Edge-Cloud environment.

Proposed system architecture
As illustrated in Fig. 1, the edge-cloud system from bot-
tom to the top consists of three layers/tiers: IoT devices
(end-user devices), multiple Edge Computing nodes and
the Cloud (service provider). The IoT level is composed
of a group of connected devices (e.g., smartphones, self-
driving cars, smart CCTV); these devices have differ-
ent applications where each application has several tasks
(e.g., smart CCTV [48] application consists of movement
dedication and face recognition). These services can be
deployed and executed in different computing resources
(connected Edge node, other Edge nodes or Cloud), where
the infrastructure manager and service providers have to
decide where to run these services.
In this proposed system, at the Edge level, each Edge

Computing node is a micro datacenter with a virtual-
ized environment. It has been placed close to the con-
nected IoT devices at the base station or Wi-Fi access
point. These edge nodes have been distributed geograph-
ically and could be owned by the same Cloud provider or
other brokers [49]. Note that, it has limited computational
resources compared to the resources in the cloud. Each
edge node has a node manager that can manage computa-
tional resources and application services that run on. All
the edge nodes are connected to the Edge Controller.
The offloading tasks can be achieved when the IoT

devices decide to process the task remotely in Edge-Cloud
environments. Applications running on IoT devices can
send their offloadable tasks to be processed by the Edge-
Cloud system through their associated Edge node. We
assume that each IoT application is deployed in a Vir-
tual Machine (VM) in the edge node and the cloud. IoT
devices offload tasks which belong to a predefined set
of applications, these tasks are varied in term of the

computational requirement (task length) and communi-
cation demand (amount of transferred data). It is assumed
that tasks are already offloaded from the IoT devices, and
each task is independent; thus, the dependency between
the tasks is not addressed in this paper. The locations
of IoT devices are important for the service time perfor-
mance because it is assumed that each location is covered
by a dedicated wireless access point with an Edge node
and the IoT devices connect to the related WLAN when
they move to the covered location.
The associated Edge can process IoT tasks and also can

be processed collaboratively with other edge nodes or the
cloud, based on Edge orchestrator decisions. For example,
if an IoT application is located in an edge node faraway
from its connected edge, its data traffic has to be routed
to it via a longer path in the Edge-Cloud system. At the
cloud level, a massive amount of resources that enable IoT
applications’ tasks to be processed and stored.
The proposed architecture is just a possible implemen-

tation of other architectures in the literature such as
[3, 43, 50]. The main difference in the proposed archi-
tecture is the introduced layer between the edge nodes
and the cloud. This layer is responsible for managing and
assigning offloading tasks to the edge nodes. In prac-
tice, the edge computing nodes are connected through
an intermediate layer (for example, backbone router) that
serves as a central control manager to monitor them.
In addition, software-defined network (SDN) technology
can be utilized at this layer to monitor and manage the
application services between the edge computing nodes
depending on data gathered, in which where SDN has a
global view of the network and is capable of making more
efficient and precise decisions [51]. More details about
the required components and their interactions within the
proposed architecture are as follow.

Edge controller
Edge Controller (EC) is designed similar to [33, 52, 53],
some studies called Edge Orchestrator, which is a central-
ized component that responsible for planning, deploying
and managing application services in the Edge-Cloud sys-
tem. EC communicates with other components in the
architecture to know the status of resources in the system
(e.g., available and used), the number of IoT devices, their
applications’ tasks and where IoT tasks have been allo-
cated (e.g., Edge or Cloud). EC consists of the following
components: Application Manager, Infrastructure Man-
ager, Monitoring and Planner. The location of the Edge
Controller can be deployed in any layer between Edge
and Cloud. For example, in [54], EC act as an indepen-
dent entity in the edge layer that manage all the edge
nodes in its control. It is also responsible for schedul-
ing the offloading tasks in order to satisfy applications’
users and Edge-Cloud System requirements. The EC is



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 6 of 19

Fig. 1 An overview of Edge-Cloud system

synchronizing its data with the centralized Cloud because
if there is any failure, other edge nodes can take EC
responsibility from the cloud [55, 56].

Applicationmanager
The application manager is responsible for managing
applications running in the Edge-Cloud system. This
includes requirements of application tasks, such as the
amount of data to be transferred, the amount of compu-
tational requirement (e.g., required CPU) and the latency
constraints. Besides, the number of application users for
each edge node.

Infrastructuremanager
The role of the infrastructure manager is to be in
charge of the physical resources in the entire Edge-Cloud

system. For instance, processors, networking and the
connected IoT devices for all edge nodes. As men-
tioned earlier, Edge-Cloud is a virtualized environ-
ment; thus, this component responsible for the VMs
as well. In the context of this research, this compo-
nent provides the EC with the utilization level of the
VMs.

Monitoring
The main responsibility of this component is to mon-
itoring application tasks (e.g., computational delay and
communication delay) and computational resources (e.g.,
CPU utilization) during the execution of applications’
tasks in the Edge-Cloud system. Furthermore, detecting
the tasks’ failures due to network issues or the shortage of
computational resources.



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 7 of 19

Planner
The main role of this component is to propose
the scheduling policy of the offloading tasks in the
Edge-Cloud system and the location where they will be
placed (e.g., local edge, other edges or the cloud). In
the context of this research, the proposed approach for
offloading tasks works on this component and passes its
results to EC for execution.

Tasks scheduling approach for minimum latency
In the Edge-Cloud environment, IoT devices produce a
stream of incoming offloading tasks that differ in terms
of their computation and network demand. This would
require an efficient task scheduling technique that con-
siders these differences in order to enhance the overall
service performance and minimize the delay in the pro-
cessing of offloaded tasks.
Therefore, the proposed approach supports the

resource manager in the Edge-Cloud system regarding
scheduling the offloading tasks in order to minimize
the overall service time and improve the efficiency of
Edge-Cloud resources. As shown in Fig. 2, the approach
can be described using the MAPE method (Monitoring,
Analyzing, Planning and Executing) to assign the tasks to
appropriate resources and monitoring the system perfor-
mance periodically. The proposed approach works in the
Edge Controller (EC) as follows.
First, the edge controller receives the IoT devices infor-

mation summary from edge computing nodes including
the number of connected IoT devices, task length, the
required number of cycles for task, and deadline require-
ment to complete task. In addition, the status of com-
putation resources at each edge node is monitored peri-
odically. Subsequently, the edge controller computes and
decides the optimal strategy for scheduling and assigning
the computation tasks to the best server (i.e. one of the

edge computing server nodes or the cloud server) for exe-
cution based on the gathered information through Fuzzy
logic and task scheduling algorithms. Later, we present the
proposed algorithms in detail.

Fuzzy logic system
In this stage, the proposed approach will get the infor-
mation of the offloading tasks and server utilization in
order to determine the appropriate location of the offload-
ing tasks, as depicted in Fig. 3. The following is a brief
description of the process of fuzzy logic system.

1 Fuzzy Input Variables: In this step, the necessary
inputs are specified for the fuzzy system. The
required inputs are VM utilization at the edge, task
length, the amount of data to be transferred for each
task and delay sensitivity. All these variables are
represented as a linguistic variable: Low, Medium
and High, as depicted in Fig. 3. These categories
represent the dynamic changing over Edge-Cloud
infrastructure and the characteristics of applications’
offloaded tasks.

(a) VMUtilization: this parameter indicates the
current utilization level of the VM hosted by
the local edge server. Thus, we can know how
much resource capacity is available on that
VM. If it is highly utilized, then offloading to
other edge servers or the cloud could be the
solution, depending on the task
characteristics in terms of computational,
communication and latency sensitivity.

(b) Task Length: this parameter represents the
computational demand of the task; it
measures by Million Instruction Per Second
(MIPS). As the edge has a limited
computational resource, heavy tasks might be

Fig. 2 The proposed approach of scheduling offloading tasks



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 8 of 19

Fig. 3 Process of the proposed fuzzy logic system

appropriate to offloaded to the cloud and vice
versa. However, we cannot take this
parameter without considering other
parameters such as VM utilization,
communication demand and delay sensitivity.

(c) Network Demand: this parameter represents
the required communication of the tasks for
both uploading and downloading. It is an
important measure for the offloading decision
to consider where to offload the task to (local
edge, other edge or cloud). For example, tasks
of Augmented Reality (AR) applications that
require video streaming must upload the
request, then do some processing (e.g., 3D
rendering, image processing, etc.), and then
receive the results as a video stream. This
requires transferring a high amount of data
for uploading and downloading, which takes a
significant amount of the total service
time.

(d) Delay Sensitivity of the Task: this
parameter refers to the sensitivity of the tasks
to accept the level of latency (computation or
communication delay). For example, some
application has urgent tasks that require
ultra-low latency; whereas, some tasks may
accept some higher level of latency. This
parameter could help the task scheduler to
assign the tasks to an appropriate server
within the Edge-Cloud system.

2 Fuzzification: In the fuzzification stage, the fuzzifier
will take all the required values as numerical input
from system infrastructure monitoring and incoming
tasks. Then, assign each value to its predefined
linguistic variables in the membership functions (e.g.,
Low, Medium and High). After that, fuzzy variables
are combined and evaluates in the fuzzy rules-base to

take the decision and produce the output in the
defuzzification stage.

(a) Fuzzy Membership Functions: the fuzzy
membership function is used to quantify the
linguistic term for each fuzzy variable. In this
research, four functions have been used
(average VM utilization, task length, network
bandwidth and delay sensitivity) and each
function has three variables (Low, Medium,
High). The values of each fuzzy variable are
determined empirically based on a number of
experiments similar to approaches used in
[41, 57]. Figure 4 shows the four membership
functions.

(b) Fuzzy Rules-Base: a fuzzy rules-base is
composed of a set of fuzzy rules that similar
to the reasoning process of human. It is a
simple if-then rule that covers all the possible
situations of the application characteristics
and system conditions. These rules play
critical directions to define the overall system
performance. An example of the rules, if task
length is high AND Network demand is low
AND VM utilization is high AND the delay
sensitivity is high THEN offloaded the task to
the cloud. The output will be used in the
defuzzification stage. Table 1 gives results
examples of the system’s fuzzy rules. The
main aim is to provide low latency for the IoT
applications by reducing the data movement
from IoT device to the cloud and avoiding the
overloaded node, which will affect the end to
end service time.

3 Defuzzification: Defuzzification is the process to
convert the fuzzy rules output to a specific value
based on the output membership function. There are



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 9 of 19

Fig. 4 The four membership functions

a range of ways to produce the output membership
function in the fuzzy logic system and these examples
of the often-used method (e.g., maximum, mean of
maximum and centroid). This work adopts the
maximum approach because our membership
function has one maximum at a time. Figure 5
represents the output membership function of the
fuzzy logic system. For example, if the output
fuzzification process is 38, then μLocalEdge is 0.1 and
μCollaborativeEdge is 0.4, the defuzzification process will
take the maximum, and the task will be offloaded to
the other collaborative edge node.

Algorithm 1 provides the detailed processes to derive
the optimal target layer for offloading the computation
tasks. First, the information of IoT devices and their appli-
cations’ tasks are gathered which includes the number of
connected IoT devices, task length, the required number
of cycles for task, and deadline requirement to complete
task. Besides, the edge computing nodes and the cloud
server send their VM utilization. Then, as shown in line
3, the EC entity iterates over the computation tasks and
uses the fuzzy logic function to quantify the linguistic
term for each fuzzy variable as output. Afterwards, Fuzzy

rules-based is utilized to determine the optimal target
layer for each computation task wherever edge node or
cloud server.
The computational complexity for this algorithm is

O(t), where t denotes the number of parameters in appli-
cations’ tasks (T). The step of sending the required infor-
mation to the fuzzy logic system for each task requires
O(t) time. According to the fuzzy inference logic, one of
the three different output of fuzzy sets can be allocated
to each task; thus, the time complexity of proposed fuzzy
logic isO(n).

Task selection phase based on resource type
As shown in Fig. 6, the incoming tasks inter to the
fuzzy logic system. Thus, the proposed fuzzy logic sys-
tem is applied in order to decide the target layer to
offload the task. The task scheduling algorithm will assign
the tasks to the appropriate computational resources
within Local Edge or Collaborative Edge based on the
information from Infrastructure monitoring. This pro-
cess runs on the EC, which is described in “Proposed
system architecture” section. Further, we assume that
each Edge node has a heterogeneity of computational
resources.



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 10 of 19

Table 1 Fuzzy rules-base

Input Variables

Task
Length
(MIPS)

Network
Demand (Mbps)

VM
Utilization

Delay
Sensi-
tivity

Output
Decision

Low Low Low Low Local
Edge

Low Low Low Medium Local
Edge

Low Low Medium High Local
Edge

Low Low Medium Low Local
Edge

Low Medium High Medium Local
Edge

Low Medium High High Local
Edge

Low Medium Low Low Local
Edge

Low Medium Low Medium Local
Edge

Medium High Medium High Other
Edge

Medium High Medium Low Other
Edge

Medium High High Medium Other
Edge

Medium High High High Other
Edge

Medium Low Low Low Local
Edge

Medium Low Low Medium Other
Edge

Medium Low Medium High Other
Edge

Medium Low Medium Low Other
Edge

High Medium High Medium Cloud

High Medium High High Cloud

High Medium Low Low Other
Edge

High Medium Low Medium Other
Edge

High High Medium High Cloud

High High Medium Low Cloud

High High High Medium Cloud

High High High High Cloud

Algorithm 2 shows the detailed processes to assign
each computation task to the appropriate computational
resources. The process for assigning computation tasks
is as follows. Firstly, the set of application, computation
tasks, and the available computational resources at edge

node are gathered. Then, as shown in line 1, the computa-
tion tasks are sorted in descending order regrading their
CPU requirements, in which the heavy tasks come first
and the lightweight tasks come last. In addition, as shown
in line 2, the available computational resources (VMs) of
edge node are sorted in descending order regrading their
CPU capabilities (i.e., number of cores), where the most
powerful VMs comes first. After that, the algorithm iter-
ates over the ordered tasks and assigns each application
task to the appropriate computational resources, where
the heavy tasks could be assigned to the powerful VMs,
shown in lines 3-11. This ensures that heavy tasks have
the priority to be assigned to a powerful VM, thereby will
produce less processing time.
The computational complexity for this algorithm is

O(n2), where n denotes the number of computation tasks.
This can be analyzed as follow. Firstly, the computation
tasks and computation resources are sorted, in which
O(n2) is the worst-case time complexity of the sorting.
Then, the computation tasks of IoT applications are iter-
ated to be assigned to computational resources, thereby
O(n2) is the time complexity. Consequently, the overall
time complexity is (O(n2)+O(n2)) which isO(n2), where
the constant is removed.

Implementation
The task offloading approach based on a fuzzy logic sys-
tem that aims to enhance the end-to-end service time is
introduced. This approach considered both tasks require-
ments (e.g., computational, network and delay) and the
dynamicity of the edge-cloud system in terms of resource
utilization. In order to evaluate this approach, a number
of experiments have been conducted on EdgeCloudSim
[58] and compared with other competitors’ solutions. The
EdgeCloudSim has been used since it provides the vital
functionality of Edge-Cloud environment such as support
offloading and users mobility [41, 45, 59, 60]. The process
started with generating tasks of different IoT applications,
then scheduling tasks in the Edge-Cloud system based on
the proposed scheduling algorithms.
Approaches that dealt with offloading tasks using fuzzy

logic are limited in the area of Edge Computing. Thus,
the evaluation of our approach will be against the existing
approaches. First is a utilization-based approach, which
makes decisions on offloading tasks based on the server
utilization level, by selecting the least-load machine for
offloaded tasks. The aim of this approach is to utilize edge
resources and make load balancing. This approach has
been adopted in a number of studies due to the simplic-
ity of its logic and the feasibility of its implementation
[61, 62]. It is well suitable for the common situation,
in which the number of applications and the execution
time of tasks is both moderate. However, it doesn’t con-
sider task communication demand and application delay



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 11 of 19

Fig. 5 The output membership function of the fuzzy logic system

sensitivity. Second, Flroes [63] proposed a task offload-
ing approach based on fuzzy logic for IoT applications.
This approach aims to decide whether to offload to the

Algorithm 1: Fuzzy Logic for Offloading to the Target
Layer

1 INPUT: Applications’ tasks Ti with their parameters
TLength, TNetwork and TDelay

2 OUTPUT: Select computational resources at the
target layer: RLocal Edge, RCollaborative Edge and RCloud

1: for all Tasks in Ti do
2: Read VM average utilization VMu
3: F = FuzzyLogicSystem(TLength

i ,TNetwork
i ,TDelay

i
,VMu);

4: if F ≤ FLow then
5: Allocate Ti on RLocal Edge
6: else
7: if F ≤ FMed then
8: Allocate Ti on RCollaborative Edge
9: else

10: Allocate Ti on RCloud
11: end if
12: end if
13: end for

cloud or perform the tasks in end devices at the edge
layer. However, this approach neglected the utilization of
the Edge-Cloud resources, which could cause an over-
loaded VM and lead to significant latency. Finally, Snomes
[41] proposed tasks offloading approach that consider
both applications tasks requirements and resource utiliza-
tion using a fuzzy logic system. However, this approach
focused on homogeneous resources, whereas the Edge-
Cloud system is composed of heterogeneous resources.
Moreover, their solution decides whether to offload to the
local edge or the cloud, whereas our proposed approach
considers the heterogeneity of resources as well as the
available resources in other nearby edge nodes. All of
these approaches have been implemented in the simula-
tion tool in order to evaluate and compare them with the
proposed approach.

Simulation set-up
In the Edge-Cloud environment, there are a number of
IoT/mobile devices that have a number of applications.
These applications consist of different tasks which require
to be processed in the Edge-Cloud resources. Edge nodes
are distributed closer to end devices, and we assume each
edge node covers a specific area. IoT devices connect to
the nearest edge node through WLAN and then can send
the offloaded tasks. Also, we assume that each node has
a node manager and all edge nodes are managed by the



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 12 of 19

Fig. 6 Task selection phase

Algorithm 2: Task Scheduling Algorithm
1 INPUT: Set of Applications Ai, Set of Tasks Tj and Set
of Computational Resources at Edge node Rc

2 OUTPUT: Assign Task Tij to Target Computational
resources Rc
1: Sort task list T in descending order of task length.
2: Sort computational resources list R in descending

order of resource capacity.
3: for all Application in Ai do
4: while Tij has not been scheduled do
5: if TCPU

ij ≤ RCPU
c then

6: Assign Tij on Rc
7: Tij ++
8: else
9: Rc ++

10: end if
11: end while
12: end for

EC, described in “Proposed system architecture” section.
In our experiments, we have three edge nodes and a vari-
able number of IoT devices (from 200 to 2000) dispersed
and mobile between the three nodes. Table 2 represents
the key parameters of our simulations.

Table 2 Simulation key parameters

Parameters Values

Simulation Time 30 minutes

Warm-up Period 3 minutes

Number of Iterations 5

Number of IoT devices 200-2000

Number of Edge Nodes 3

Number of VM per edge server 8

Number of VM in Cloud Not limited

Probability of selecting location Equal

Additionally, we assume that the VMs on each edge
node are heterogeneous. Table 3 shows the configura-
tions of the VMs that were considered in the experiments.
These configurations are based on Rackspace, which pro-
vides a wide range of VM types [45, 64]. Two types of
VMs are used with different capabilities to supports the
end devices with computational resources. The first type
of VMs has two cores Intel Xen CPU, and the second type
of VMs has four cores Intel Xen CPU.
IoT applications generate different offloading tasks

in terms of CPU and network load. To evaluate our
approach, we need different applications with differ-
ent computational and communication demands. Several
research studies generate random tasks in their exper-
iments [36, 65]. Table 4 summarized the main charac-
teristics of the four applications that are used in this
experiment similar to the works presented in [41, 45]. Task
Length refers to require CPU resources for the task inMil-
lion Instructions (MI) unit. Uploading and downloading
data determines the amount of data to send/receive for
each task from the IoT device to the Edge-Cloud system.
Delay sensitivity refers to the acceptance level of delay
sensitivity.
Figure 7 shows a snapshot of the simulation results

for one scenario. Each scenario takes one approach (e.g.,
Utilization-Based) with a specific number of devices. All
the experiments have been repeated five times (iterations)
for each scenario, and the statistical analysis has been per-
formed to consider the mean values of the results in order
to avoid any anomalies from the simulation results.

Results and discussion
This section presents the quantitative evaluation of the
proposed approach compared to other related works’

Table 3 Configurations of VMs

VM Type CPU Cores MIPS Storage

Medium VM 2 vCPUs 10000 50000

Large VM 4 vCPUs 20000 100000



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 13 of 19

Table 4 Application characteristics

Apps Task
Length
(MI)

Uploading
Data
(KB)

Downloading
Data
(KB)

Delay
Sensi-
tivity

Augmented
Reality

9000 1500 25 0.9

Health
Care

3000 20 1250 0.7

Compute
Inten-
sive

45000 2500 200 0.1

Infotainment 15000 25 1000 0.3

algorithms (e.g., Utilization-Based, Sonmez and Flores).
The simulation results consist of the average service time,
average processing delay, average network delay, average
task failure and average VM utilization. The service time
of each task will depend on the location of processing,
which can be one of the following: 1) Local Edge, the over-
all service time consists of WLAN time and processing
time. 2) Collaborative Edge, the overall service time will
be WLAN/Metropolitan-Area Network (MAN) time and
processing time. 3) Cloud, the overall service time consist
of WLAN/MAN/Wide Area Network (WAN) time and
processing time in the cloud. After that, we take the aver-
age for all tasks in each scenario based on the following
equation:

Service Time =
∑

Tprocessing time+∑
Tnetwork time

Number of Tasks

The main performance metric is the service time,
since the end-to-end service time of an offloading task

is most significant for IoT latency-sensitive application.
Figure 8 shows the average service time for the 4 differ-
ent approaches versus number of IoT devices, in which
the service time is composed of processing and network
time. The purpose of the experiments was to enhance the
resources management in Edge-Cloud system in order to
reduce latency for IoT applications. It is seen from the
figure that all the approaches have nearly the same per-
formance when the system is unloaded. However, with
increasing the number of IoT devices, the service time
of the proposed approach remains steady compared to
the other approaches. Moreover, the service time for Flo-
res algorithm increases rapidly after the number of IoT
devices exceeds 1400. Whereas, Utilization-Based and
Sonmez algorithms nearly have the same performance.
This is attributed to the usability of VM utilization in task
scheduling policy which will avoid processing delays and
then produce less service time.
The average network time of all approaches related to a

different numbers of IoT devices is shown in Fig. 9. It is
observed from the figure that all the approaches have the
same network time when the system is stable, whereas, the
results are differentiated after the system is overloaded.
Also, the utilization-based approach can provide the low-
est network time compared to the other approaches. This
is due to the demands associated with increased time
regarding the processes of communication when the task
might be sent to the cloud for execution, particularly with
the larger number of IoT devices.
Similarly, Fig. 10 assesses the processing time of the

four approaches versus different numbers of IoT devices.
It is seen from the figure that when the number of IoT

Fig. 7 A snapshot of the simulation results for one scenario



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 14 of 19

Fig. 8 The service time of the proposed approach with other related approaches

devices is less than 1400, all the approaches approximately
have the same processing time. However, as the number of
IoT devices further increases, the performance of the Flo-
res approach decorates in comparison with Sonmez and
Utilization-based approaches while our proposed model
remains steady and outperforms the others. This is traced
to the shorter processing time as the computation tasks
are assigned to the appropriate resources.Whereas, Flores
approach offloads the task to the edge whenever possible
without considering whether the resource is overloaded,
thereby leads to an increase in the processing time.
In the EdgeCloudSim, the task failure can be happened

due to different reasons such as the lack of computa-
tional resources at the VM (e.g., overloaded VM) and

congested network. Therefore, task failure is considered
as important performance metric in order to evaluate the
offloading approach. In the following, the evaluation of
task failures for our approach will be divided into two
parts, system stable and system overloaded.
First, in the case of system stability, the proposed

approach has the lowest percentage while the other
approaches have nearly the same performance, and
around 0.5% of tasks will fail, shown in Fig. 11. This is due
to that our approach considers the required amount of
data to be uploaded and downloaded. On the other hand,
when the system load is high (the second part), it can be
seen that the lowest task failure average is for the pro-
posed approach, as shown in Fig. 12. Interestingly, there

Fig. 9 The network time of the proposed approach with other related approaches



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 15 of 19

Fig. 10 The processing time of the proposed approach with other related approaches

were slight differences betweenUtilization-Based and Flo-
res for all number of IoT devices. When the system load
is low, most of the tasks failures are due to network issues
such as losses of the packet [9], but when the system is
overloaded, task failures are due to the lack of computa-
tion (e.g., unsuccessful completion task) as well as network
issues. In comparison, the proposed approach has the low-
est task failures because it assigns the heavy tasks to the
powerful VM as well as considers other factors (e.g., VM
utilization, network demand and delay sensitivity).
Finally, the preliminary analysis of the average VM uti-

lization at edge servers versus different number of IoT
devices is shown in Fig. 13, where the system server
IoT devices less than 1000. It can be seen that, the uti-
lization level of all the approaches at 200 devices is
similar, while its value is changed when the number of

devices increased. In addition, the proposed approach
is keeping the utilization level relatively low compar-
ing to other approaches when the number of devices
increased.
On the other hand, as shown in Fig. 14, when the sys-

tem load is high, the proposed approach was the lowest
compared to other algorithms. This is because it trades
utilization for reduced service time. Also, it can be seen
that Sonmez and the proposed approach were relatively
similar and lower than the others. Flores was the highest
and we can link that with results of failed tasks because it
assigns the tasks to a highly utilized VM (overloaded VM).
Moreover, the proposed approach succeeded in avoiding
reaching the exponential deterioration when the compu-
tational resources reach their limit comparing to other
existing approaches.When the resources reach their limit,

Fig. 11 Percentage of failed tasks of the proposed approach with other related approaches part 1



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 16 of 19

Fig. 12 Percentage of failed tasks of the proposed approach with other related approaches part 2

this will increase the overall service time and task failure
due to insufficient computational resources.

Lessons learned
The proposed approach was compared against exist-
ing related works using a simulation tool called Edge-
CloudSim, and it was evaluated in the domain of the edge-
cloud environment; where it was found to improve the
overall service time and task failure for latency-sensitive
applications as well as effectively utilizing the edge-cloud
resources.
However, EdgeCloudSim simulator has some limita-

tions, in which only a single server queuing model is used
for calculating the communication delay [66]. Therefore,
all the available network technologies could not be rep-
resented and then could be limited to obtain the results.
In addition, the VM migration process between Edge-
Cloud nodes is not handled where it can help to reduce

the latency, improve the utilization and decrease the task
failures.
On the other hand, there are also a few limitations on

the proposed approach. In this research, we assume that
we know the required parameters (e.g., task length, the
amount of transferred data for uploading and download-
ing data) in advance, which might not always be accurate
due to the impact of some other factors. For example, task
length is not the only parameter that detriment the CPU
time, other parameters such as retrieving data frommem-
ory and I/O could affect the CPU time. Additionally, the
network time of transferred data affected by other fac-
tors such as network congestion. Therefore, methods such
as Reinforcement Learning could be useful to measure
the effectiveness of the offloading decision by observing
each action and train the system to have accurate deci-
sions. Moreover, this work trades utilization for reduced
overall service time; thus, it could lead to wastage in

Fig. 13 Edge server utilization of the proposed approach with other related approaches part 1



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 17 of 19

Fig. 14 Edge server utilization of the proposed approach with other related approaches part 2

both computation power and resources at the edge level.
Other energy efficiency techniques (e.g., VM migration
and auto-scaling horizontal/vertical) might be used in the
future to overcome this issue and strike a balance between
satisfying the demands of applications and utilizing the
Edge/Cloud computational resources efficiently.

Conclusion and future work
This paper has presented and evaluated a novel task
offloading approach for latency-sensitivity IoT applica-
tions in the Edge-Cloud systems. This approach consid-
ered application characteristics (e.g., CPU demand, net-
work demand and delay sensitivity) as well as the dynam-
icity and heterogeneity of resources in order to minimize
the overall service time and enhance resource utilization.
Moreover, it considered different types of computational
resources which represent the real-world scenario. Differ-
ent approaches to schedule offloading tasks are simulated
in order to evaluate the proposed approach. The obtained
results show that the scheduling algorithms of offload-
ing tasks not considering application characteristics and
system behavior could lead to service time degradation
for latency-sensitive applications. Moreover, the proposed
approach works effectively with task offloading more than
other related approaches in terms of overall service time
and resource utilization. It can also reduce the overall task
failures due to issues in both network and computational
resources.
As a part of future work, we intend to extend our

approach by considering more computational resources
such as different Graphic Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs), since there are
many applications for AR/VR and video gaming requiring
intensive computational in order to process their tasks.
Also, task dependency plays an essential factor in affect-
ing the decision of scheduling tasks. Thus, this work can
be extended to consider tasks dependency in the pro-

cess of scheduling offloading tasks. Tasks dependency
and the intercommunication between tasks can be rep-
resented as Direct Acyclic Graph (DAG), which can be
modelled within the proposed approach to enhance the
overall service time of latency-sensitive applications.

Acknowledgements
The authors would like to acknowledge the Deanship of Scientific Research,
Taibah University, Al-Madinah, Saudi Arabia, for providing research resources
and equipment.
In addition, the authors would like to thank the Deanship of Scientific
Research, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia, for
supporting this work.

Authors’ contributions
Conceptualization, Data curation, Formal analysis, Methodology, Resources,
Software, Visualization and Writing - original draft: J.Almutairi and M.Aldossary.
Supervision, Validation, Writing - review and editing M.Aldossary. All authors
have read and agreed to the published version of the manuscript.

Authors’ information
Jaber Almutairi received his BSc degree in Computer Science from Taibah
University, Medina, Saudi Arabia in 2012 and his MSc degree in Advanced
Computer Science (Cloud Computing) and PhD from University of Leeds,
Leeds, UK in 2016 and 2020. His research interests include resource
management and simulation in the edge computing environment and
applications of the internet of things. Dr Almutairi is currently Assistant
professor with the Department of Computer Science, College of Computer
Science and Engineering, Taibah University, Madinah, Saudi Arabia.
Mohammad Aldossary received his B.Sc. degree in Computer Science from
King Saud University, Riyadh, Saudi Arabia in 2009 and the M.S. degree in
Computer Science from Southern Polytechnic State University, Georgia, USA in
2013. He was awarded a Ph.D. degree in Computer Science from the
University of Leeds, UK, in 2019. His main research areas focus on Distributed
Systems, including Cloud Computing, Fog Computing, Edge Computing,
System Architectures, Resource Management, and Energy Efficiency. Dr
Aldossary is currently an assistant professor in the Computer Science
department at Prince Sattam bin Abdulaziz University, Saudi Arabia.

Funding
Not applicable.

Availability of data andmaterials
Not applicable.

Declarations



Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 18 of 19

Competing interests
The authors declare that they have no competing interests.

Authors details
1Department of Computer Science, College of Computer Science and
Engineering, Taibah University, Al-Madinah, Saudi Arabia. 2Department of
Computer Science, College of Arts and Science, Prince Sattam bin Abdulaziz
University, Al-Kharj, Saudi Arabia.

Received: 23 November 2020 Accepted: 30 March 2021

References
1. Rababah B, Alam T, Eskicioglu R (2020) The next generation internet of

things architecture towards distributed intelligence: Reviews,
applications, and research challenges. J Telecommun Electron Comput
Eng 12(2)

2. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Sensing as a
service model for smart cities supported by internet of things. Trans
Emerg Telecommun Technol 25(1):81–93

3. Vaquero LM, Rodero-Merino L (2014) Finding your way in the fog:
Towards a comprehensive definition of fog computing. ACM SIGCOMM
Comput Commun Rev 44(5):27–32

4. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT):
A vision, architectural elements, and future directions. Futur Gener
Comput Syst 29(7):1645–1660

5. Shekhar S, Gokhale A (2017) Dynamic resource management across
cloud-edge resources for performance-sensitive applications. In: 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, Madrid. pp 707–710

6. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J,
Jue JP (2019) All one needs to know about fog computing and related
edge computing paradigms: A complete survey. J Syst Archit 98:289–330

7. Elgendy I, Zhang W, Liu C, Hsu C-H (2018) An efficient and secured
framework for mobile cloud computing. IEEE Trans Cloud Comput
9(1):79–87. https://doi.org/10.1109/TCC.2018.2847347

8. Tyagi H, Kumar R (2020) Cloud computing for iot. In: Internet of Things
(IoT). Springer, Berlin. pp 25–41

9. Sahni Y, Cao J, Zhang S, Yang L (2017) Edge mesh: A new paradigm to
enable distributed intelligence in internet of things. IEEE access
5:16441–16458

10. Cong P, Zhou J, Li L, Cao K, Wei T, Li K (2020) A survey of hierarchical
energy optimization for mobile edge computing: A perspective from end
devices to the cloud. ACM Comput Surv(CSUR) 53(2):1–44

11. Elgendy IA, Zhang W, Tian Y-C, Li K (2019) Resource allocation and
computation offloading with data security for mobile edge computing.
Futur Gener Comput Syst 100:531–541

12. Zhang W-Z, Elgendy IA, Hammad M, Iliyasu AM, Du X, Guizani M,
Abd El-Latif AA (2020) Secure and optimized load balancing for multi-tier
iot and edge-cloud computing systems. IEEE Internet Things J. https://
doi.org/10.1109/JIOT.2020.3042433

13. Elgendy IA, Zhang W-Z, Zeng Y, He H, Tian Y-C, Yang Y (2020) Efficient and
secure multi-user multi-task computation offloading for mobile-edge
computing in mobile IoT networks. IEEE Trans Netw Serv Manag
17(4):2410–2422

14. Mahmud R, Ramamohanarao K, Buyya R (2020) Application management
in fog computing environments: A taxonomy, review and future
directions. ACM Comput Surv 53(4):1–43

15. Helbig M, Deb K, Engelbrecht A (2016) Key challenges and future
directions of dynamic multi-objective optimisation. In: 2016 IEEE Congress
on Evolutionary Computation (CEC). IEEE, Vancouver. pp 1256–1261

16. Zhou D, Chao F, Lin C-M, Yang L, Shi M, Zhou C (2017) Integration of fuzzy
CMAC and BELC networks for uncertain nonlinear system control. In: 2017
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Naples.
pp 1–6

17. Abdullah L (2013) Fuzzy multi criteria decisionmaking and its applications:
a brief review of category. Procedia-Soc Behav Sci 97:131–136

18. Wei X, Tang C, Fan J, Subramaniam S (2019) Joint optimization of energy
consumption and delay in cloud-to-thing continuum. IEEE Internet
Things J 6(2):2325–2337

19. Yang L, Cao J, Cheng H, Ji Y (2014) Multi-user computation partitioning
for latency sensitive mobile cloud applications. IEEE Trans Comput
64(8):2253–2266

20. Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware application
module management for fog computing environments. ACM Trans
Internet Technol (TOIT) 19(1):1–21

21. Mukherjee A, De D, Roy DG (2016) A power and latency aware cloudlet
selection strategy for multi-cloudlet environment. IEEE Trans Cloud
Comput 7(1):141–154

22. Sharma S, Saini H (2019) A novel four-tier architecture for delay aware
scheduling and load balancing in fog environment. Sustain Comput
Informa Syst 24:100355

23. Xu X, Fu S, Cai Q, Tian W, Liu W, Dou W, Sun X, Liu AX (2018) Dynamic
resource allocation for load balancing in fog environment. Wirel
Commun Mob Comput 2018:1–15

24. Yang B, Chai WK, Pavlou G, Katsaros KV (2016) Seamless support of low
latency mobile applications with nfv-enabled mobile edge-cloud. In:
2016 5th IEEE International Conference on Cloud Networking (Cloudnet).
IEEE, Pisa. pp 136–141

25. Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2019) Quality of
Experience (QoE)-aware placement of applications in Fog computing
environments. J Parallel Distrib Comput 132:190–203

26. Hájek P (2013) Metamathematics of Fuzzy Logic, Vol. 4. Springer, Springer
Netherlands

27. Kong X, Lin C, Jiang Y, Yan W, Chu X (2011) Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction. J Netw
Comput Appl 34(4):1068–1077

28. Ansari A, Bakar AA (2014) A comparative study of three artificial
intelligence techniques: Genetic algorithm, neural network, and fuzzy
logic, on scheduling problem. In: 2014 4th International Conference on
Artificial Intelligence with Applications in Engineering and Technology.
IEEE, Kota Kinabalu. pp 31–36

29. Jiang C, Cheng X, Gao H, Zhou X, Wan J (2019) Toward computation
offloading in edge computing: A survey. IEEE Access 7:131543–131558

30. Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture
and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

31. Lyu X, Tian H, Jiang L, Vinel A, Maharjan S, Gjessing S, Zhang Y (2018)
Selective offloading in mobile edge computing for the green internet of
things. IEEE Network 32(1):54–60

32. Dinh TQ, Tang J, La QD, Quek TQ (2017) Offloading in mobile edge
computing: Task allocation and computational frequency scaling. IEEE
Trans Commun 65(8):3571–3584

33. Flores H, Su X, Kostakos V, Ding AY, Nurmi P, Tarkoma S, Hui P, Li Y (2017)
Large-scale offloading in the internet of things. In: 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerComWorkshops). IEEE, Kona. pp 479–484

34. Samie F, Tsoutsouras V, Bauer L, Xydis S, Soudris D, Henkel J (2016)
Computation offloading and resource allocation for low-power iot edge
devices. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).
IEEE, Reston. pp 7–12

35. Wang S, Zafer M, Leung KK (2017) Online placement of multi-component
applications in edge computing environments. IEEE Access 5:2514–2533

36. Rodrigues TG, Suto K, Nishiyama H, Kato N (2016) Hybrid method for
minimizing service delay in edge cloud computing through VMmigration
and transmission power control. IEEE Trans Comput 66(5):810–819

37. Deng R, Lu R, Lai C, Luan TH, Liang H (2016) Optimal workload allocation
in fog-cloud computing toward balanced delay and power consumption.
IEEE Internet Things J 3(6):1171–1181

38. Zeng D, Gu L, Guo S, Cheng Z, Yu S (2016) Joint optimization of task
scheduling and image placement in fog computing supported
software-defined embedded system. IEEE Trans Comput
65(12):3702–3712

39. Fan Q, Ansari N (2018) Application aware workload allocation for edge
computing-based IoT. IEEE Internet Things J 5(3):2146–2153

40. Hassan HO, Azizi S, Shojafar M (2020) Priority, network and energy-aware
placement of IoT-based application services in fog-cloud environments.
IET Communications 14(13):2117–2129

41. Sonmez C, Ozgovde A, Ersoy C (2019) Fuzzy workload orchestration for
edge computing. IEEE Trans Netw Serv Manag 16(2):769–782

https://doi.org/10.1109/TCC.2018.2847347
https://doi.org/10.1109/JIOT.2020.3042433
https://doi.org/10.1109/JIOT.2020.3042433


Almutairi and Aldossary Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:28 Page 19 of 19

42. Nan Y, Li W, Bao W, Delicato FC, Pires PF, Zomaya AY (2016) Cost-effective
processing for delay-sensitive applications in cloud of things systems. In:
2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA). IEEE, Cambridge. pp 162–169

43. Xu J, Palanisamy B, Ludwig H, Wang Q (2017) Zenith: Utility-aware
resource allocation for edge computing. In: 2017 IEEE International
Conference on Edge Computing (EDGE). IEEE, Honolulu. pp 47–54

44. Li Y, Wang S (2018) An energy-aware edge server placement algorithm in
mobile edge computing. In: 2018 IEEE International Conference on Edge
Computing (EDGE). IEEE, San Francisco. pp 66–73

45. Scoca V, Aral A, Brandic I, De Nicola R, Uriarte RB (2018) Scheduling
latency-sensitive applications in edge computing. In: Closer. pp 158–168

46. Roy DG, De D, Mukherjee A, Buyya R (2017) Application-aware cloudlet
selection for computation offloading in multi-cloudlet environment. J
Supercomput 73(4):1672–1690

47. Taneja M, Davy A (2017) Resource aware placement of IoT application
modules in Fog-Cloud Computing Paradigm. In: 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE,
Lisbon. pp 1222–1228

48. Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On
multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration. IEEE Commun Surv Tutor
19(3):1657–1681

49. Choi N, Kim D, Lee S-J, Yi Y (2017) A fog operating system for
user-oriented iot services: Challenges and research directions. IEEE
Commun Mag 55(8):44–51

50. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in
the internet of things. In: Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing. pp 13–16

51. Li X, Li D, Wan J, Liu C, Imran M (2018) Adaptive transmission optimization
in SDN-based industrial Internet of Things with edge computing. IEEE
Internet Things J 5(3):1351–1360

52. Santoro D, Zozin D, Pizzolli D, De Pellegrini F, Cretti S (2017) Foggy: a
platform for workload orchestration in a fog computing environment. In:
2017 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE, Hong Kong. pp 231–234

53. Hegyi A, Flinck H, Ketyko I, Kuure P, Nemes C, Pinter L (2016) Application
orchestration in mobile edge cloud: placing of iot applications to the
edge. In: 2016 IEEE 1st International Workshops on Foundations and
Applications of Self Systems. IEEE, Augsburg. pp 230–235

54. Imagane K, Kanai K, Katto J, Tsuda T, Nakazato H (2018) Performance
evaluations of multimedia service function chaining in edge clouds. In:
2018 15th IEEE Annual Consumer Communications and Networking
Conference (CCNC). IEEE, Las Vegas. pp 1–4

55. Carrega A, Repetto M, Gouvas P, Zafeiropoulos A (2017) A middleware for
mobile edge computing. IEEE Cloud Comput 4(4):26–37

56. Taleb T, Dutta S, Ksentini A, Iqbal M, Flinck H (2017) Mobile edge
computing potential in making cities smarter. IEEE Commun Mag
55(3):38–43

57. Basic F, Aral A, Brandic I (2019) Fuzzy handoff control in edge offloading.
In: 2019 IEEE International Conference on Fog Computing (ICFC). IEEE,
Prague. pp 87–96

58. Sonmez C, Ozgovde A, Ersoy C (2018) Edgecloudsim: An environment for
performance evaluation of edge computing systems. Trans Emerg
Telecommun Technolog 29(11):3493

59. Zhang Q, Lin M, Yang LT, Chen Z, Khan SU, Li P (2018) A double deep
Q-learning model for energy-efficient edge scheduling. IEEE Trans Serv
Comput 12(5):739–749

60. Kovalenko A, Hussain RF, Semiari O, Salehi MA (2019) Robust resource
allocation using edge computing for vehicle to infrastructure (v2i)
networks. In: 2019 IEEE 3rd International Conference on Fog and Edge
Computing (ICFEC). IEEE, Larnaca. pp 1–6

61. Ramaswamy L, Iyengar A, Chen J (2006) Cooperative data placement and
replication in edge cache networks. In: 2006 International Conference on
Collaborative Computing: Networking, Applications and Worksharing.
IEEE, Atlanta. pp 1–9

62. Mao L, Li Y, Peng G, Xu X, Lin W (2018) A multi-resource task scheduling
algorithm for energy-performance trade-offs in green clouds. Sustain
Comput Informa Syst 19:233–241

63. Flores H, Srirama S (2013) Adaptive code offloading for mobile cloud
applications: Exploiting fuzzy sets and evidence-based learning. In:

Proceeding of the Fourth ACMWorkshop on Mobile Cloud Computing
and Services. pp 9–16

64. Aldossary M, Djemame K (2018) Performance and energy-based cost
prediction of virtual machines auto-scaling in clouds. In: 2018 44th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, Prague. pp 502–509

65. Sonmez C, Ozgovde A, Ersoy C (2017) Performance evaluation of
single-tier and two-tier cloudlet assisted applications. In: 2017 IEEE
International Conference on Communications Workshops (ICC
Workshops). IEEE, Paris. pp 302–307

66. Abreu DP, Velasquez K, Curado M, Monteiro E (2020) A comparative
analysis of simulators for the cloud to fog continuum. Simul Model Pract
Theory 101:102029

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	Related work
	Task offloading based on application characteristics
	Computation and communication demands
	Latency sensitivity

	Task offloading based on edge-cloud resources
	Resource utilization
	Resource heterogeneity


	Proposed system architecture
	Edge controller
	Application manager
	Infrastructure manager
	Monitoring
	Planner


	Tasks scheduling approach for minimum latency
	Fuzzy logic system

	Task selection phase based on resource type
	Implementation
	Simulation set-up
	Results and discussion
	Lessons learned

	Conclusion and future work
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Authors details
	References
	Publisher's Note

