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Abstract

By sharing resources with each other, different cloud providers in a cloud federation can exploit their diversity in
resource configuration and operational cost so as to improve service performance. They should consider the strategy
of resource pricing, job scheduling and server provisioning altogether to maximize their own interests. On the other
hand, they need to efficiently trade the resources with a suitable mechanism, typically auction, so as to guarantee the
participants’ profits. Nevertheless, in consideration of the heterogeneous execution times of jobs, both the pricing
strategy and trading mechanism should be delicately designed, which is obviously a challenging task. In this paper,
we firstly propose a truthful, individual-rational and ex-post budget-balanced auction mechanism for selecting pairs
of buyer and seller winners to trade virtual machines for different durations. Then, to maximize the individual profits,
we propose a dynamic resource bidding scheme and a job scheduling strategy based on our importance model of
jobs with heterogeneous execution times and resource requirements. The simulation results show that, compared
with existing ones, our design can better handle varieties of both execution time and resource requirement and make
the participants obtain more individual profits.
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Introduction
Cloud computing is nowadays the predominant paradigm
for large scale information systems, especially Inter-
net applications, more and more clouds are established
around the world. To improve cloud resource utility, cloud
federation [1] has emerged as a new technology/paradigm
to enable resource sharing among different clouds owned
by different cloud service providers.
By sharing resources with each other, cloud providers in

the federation can exploit their difference in resources and
diversity in user demands, so as to improve service quality
and save resource investment. Since workloads are unpre-
dictable, tremendous and bursty [2, 3], a cloud may elas-
tically lease resources, usually VMs, from other clouds, so
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as to cope with the load peak and avoid the risk of los-
ing customers and long term revenue due to performance
degradation. Therefore, federation offers participants the
opportunity to obtain more profits from the temporal and
geographical diversity among different clouds [4], because
both resource utilization and individual profits can be
potentially improved.
However, resource sharing among clouds in a federa-

tion is not a travail issue in terms of mechanism design
and deployment, because different clouds and different
users are involved, which all have different resources
and requirements. Considering profits of different partic-
ipants, it is hard to get the optimal solution.
Auction is an efficient mechanism widely adopted in

resource trading mechanism for cloud computing envi-
ronments [5, 6], especially cloud federations [7–9]. In a
cloud resource auction, cloud providers offer resources to
cloud users. Since there are multiple sellers and multiple
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buyers, double auction, instead of single auction, is usually
used for resource trading in cloud federation [9]. A double
auction refers to an auction with both multiple buyers and
multiple sellers are involved in trading simultaneously.
Many auction based mechanism and algorithms have

been proposed for resource trading in cloud federations
and a comprehensive survey can be found in [9]. Most
of these works aim to maximize the social welfare of the
whole federation [1, 9–12], and four major properties are
expected to hold:

• Truthfulness: an auction mechanism is said to be
truthful if disclosing the private valuation truthfully is
always the dominant strategy for a seller or buyer to
get an optimal utility, no matter what strategies are
used by other participants.

• Computational efficiency: the auction outcome
(allocation of resources and calculation of clearing
price and payment) should be computed in
polynomial time.

• Budget balance: all monetary transfers must be done
between cloud buyers and the cloud sellers, and the
auctioneer or broker (a trust worthy third party who
supervise the auction) should not lose or gain money.

• Individual rationality: a seller is always paid no less
than the price of a resource offered by a provider, and
a buyer always pays no more than its bid, i.e., the
price at which the buyer is willing to buy the resource.

Besides the social welfare of the federation, maximizing
the profit of individual participant in resource trading of
cloud federation has also been considered. Most of these
works focus on the pricing policies/mechanisms [13–15].
The double auction mechanism proposed by Li et al. [4]

should be the only solution, to the best of our knowledge,
that can achieve the optimal individual profit over the long
run in a cloud federation. Other works can only guarantee
individual rationality, nonnegative profit gain.
However, the auction mechanism in [4] is limited by

its assumption of single timeslot duration of all jobs, i.e.,
VM requests. In practice, different jobs may have differ-
ent time durations, while the solution in [4] cannot handle
such heterogeneity.
On the one hand, the multi-timeslot nature leads to the

potentially increased job types, perplexing the scheduling
decision. On the other hand, once a job is scheduled, it
will run continuously until completed, which means VM
resources should not only be leased for a single timeslot
either.
Motivated by the above issues, we propose a new dou-

ble auction based resource trading and scheduling solu-
tion. We design new auction mechanism and associated
strategies, including pricing, scheduling and provisioning
decision to handle bids of resources with multi-timeslot.
More precisely, the contributions of this work are sum-

marized as follows.

• We design a double auction-based mechanism that
can select pairs of buyer and seller winners to trade
virtual machines for different durations. The auction
is also in line with personal rationality and
ex-post-budget balance while guaranteeing the
participants to bid truthfully. Through this auction
mechanism, each cloud can trade different types of
resources in each timeslot, which enables each
winner cloud to rent them for a desirable duration
and a specified amount of resources as far as
possible.

Fig. 1 The process in cloud i
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Table 1 Cloud Information Notation

F # of clouds

S # of job types

M # of VM types

ms VM type of type s job

gs # of VMs required by type s job

ls Execution time of type s job

L Max. # of execution time

ds Max. waiting time of type s job

vs Data volume processed by type s job

rsi (t) # of type s jobs accepted at cloud i, slot t

Rsi Quota of accepting type s jobs at cloud i per slot

psi (t) Service price for each type s job at cloud i, slot t

δ Unit cost for transmitting data

Ds(max)
i Max. # of type s job drops per slot

ξ si Penalty for dropping a type s job at cloud i

Ws
i (t) Length of FIFO queue of type s job at cloud i, slot t

Qs
i (t) Length of importance queue of type s job at cloud i, slot t

Zsi (t) Length of virtual queue of type s job at cloud i, slot t

ε Constant positive parameter for Zsi (t), ∀i ∈ {1, ..., F}
V Penalty coefficient for Lyapunov framework

βi(t) Operational cost for each server at cloud i, slot t

Nm
i # of servers hosting typem VMs owned by cloud i

Cmi Max. # of typem VMs a server can host

• We propose the objective function of maximizing
individual profits for clouds and model the jobs with
heterogeneous durations and required resources in a
consistent form. Considering the auction mechanism
and the revenue target of each cloud, we use the
Lyapunov method to acquire the corresponding
pricing strategy, so that each cloud maximizes its
winning probability and ensures its benefit as well. In
order to maximize the profits, we have designed
pertinent scheduling algorithms to make full use of
resources and provide an adequate quantity of servers.

Related work
Early works on cloud resource allocation focus on improv-
ing resource utilization and saving energy in a single cloud
[16, 17]. With the further development of cloud com-
puting, a cloud provider may have several clouds, and
cloud resource allocation for multiple clouds are stud-
ied. Sun et al. propose a novel multi-layered scheduling
architecture to improve resource utilization by speculate
over-subscription and rescheduling strategies [18]. Zhao
et al. search the equilibrium point of supply-demand rela-
tionship to better pricing its resources in geo-distributed
data centers and propose corresponding scheduling rule

to maximize profit [19]. Mashayekhy et al. capture the
incentives of the users by auction-based online mech-
anism to dynamically price its resources for them and
strategically allocate resources to obtain higher profit [20].
Taking both computational resources and communication
resources into consideration, Shi et al. propose SWMOA
to price virtual clusters dynamically and PROMA to max-
imize revenue [21]. Li et al. propose a truthful online
auction mechanism for profit maximization and handle
time-varying user demands with an elastic model [22].
To better determine resource prices in cloud network-

ing systems, the auction mechanism is increasingly widely
used, which is observed by Luong et al. [23] and vari-
ous related economicmethods are surveyed. However, the
clouds in these works still belong to an autonomous enter-
prise and share intergrated information to make pricing
and scheduling decisions
Different from these studies on clouds with centralized

control, resource sharing in cloud federations has been
recently considered and studied. Most of them adopt dou-
ble auction based mechanism and aim to maximize the
social welfare of the whole federation.
Tang et al. [10] consider multi- resource fairness among

the individual clouds in a federation in a long term to
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Fig. 2 Overview of the double auction mechanism

achieve a higher resource utilization rather than revenue.
Ye et al. [11] focus on resource utilization of the federa-
tion by a reinsurance- emulated retention share strategy
instead of profit maximization. Ray et al. [1] propose a
cloud federation formation mechanism based on hedonic
coaliton game where the clouds cooperate to minimize
migration cost and obtain more profit for the federation.
Kumar et al. [9] propose a multi-unit double auction

based mechanism, called TMDA, the first one being
truthful for both the cloud users and the providers. TMDA
is also individual rational, budget-balance. Kumar et al.
[24] also propose a truthful combinatorial double auc-
tion mechanism for allocation and pricing of computing
resources in cloud. For resource allocation, utilitarian

social welfare maximization problem is formulated using
Integer Linear Programming (ILP) and a near optimal
solution is obtained using Linear Programming based
padded method.
Middya et al. [12] propose a multi-unit double auction

mechanism for users to efficiently choose cloud feder-
ations from which they can get resources. The authors
consider a multi-seller and multi-buyer double auction
mechanism for heterogeneous resources, where every
buyer submits their bids and every seller places their
offers.Besides maximization of social welfare of the whole
federation, researchers have considered individual profit
maximization recently, i.e. they attempt to maximize the
profit of individual users and clouds.

Table 2 Auction Related Notations

b̂mi (t) Actual price for cloud i to buy a typem VM in slot t

ŝmi (t) Actual price for cloud i to sell a typem VM in slot t

λmκ (t) The κ highest buy price for typem VMs

ζm
κ (t) The κ lowest buy sell for typem VMs

αm
ij (t) Available quantity of typem VMs for cloud i to buy from j

α̂m
ij (t) Actual quantity of typem VMs for cloud i to buy from j

γ̂m
i (t) Actual # of typem VMs and corresponding time bought by cloud i, slot t

η̂mi (t) Actual # of typem VMs and corresponding time sold by cloud i, slot t
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Zant et al. [14] consider various types of pricing policies,
including on-demand, spot, reserved, etc. and conduct
simulations to evaluate their performance. Zhang et al.
[15] propose effective pricing functions for a cloud
provider to employ, for computing unit resource prices
at each time point. The computed prices are posted as
‘take it or leave it’ prices for cloud users to decide whether
to rent the cloud resources, while users’ job valuations
are not revealed to the cloud provider. Such prices can
also serve in a posted-price auction mechanism for cloud
job admission and charging. Wei et al. [13] propose a
Stackelberg game among the clouds to decide their own
posted prices to trade more resources to users instead of
to other clouds.
Li et al. [4] investigate VM trading in a federation of

selfish clouds, each aiming at maximizing its own profit
by serving more job requests and selling its resource
in a higher prices. A double-auction-based mechanism
is proposed for the sell and purchase of available VMs
across cloud boundaries over time. Moreover, an efficient
dynamic VM trading and scheduling algorithm is pro-
posed to decide the true valuations of VMs in the auction,
and schedule arriving jobs with different number of VMs
and SLAs. The algorithm can also judiciously turn on and
off servers in the clouds based on the current electric-
ity prices. The dynamic algorithm serves as an efficient
strategy for each cloud to employ in the online double auc-
tion. Different from other works on auction mechanism,
the solution in [4] has two major advantages: i) it explic-
itly addresses individual profit maximization over the long
run (other works provide only individual rationality, i.e.,
nonnegative profit gain), ii) it provides methods to quan-
titatively calculate the true valuations in each bid (which
is usually assumed to be known in other works). At the
same time, this solution has all desirable properties such
as truthfulness, ex-post budget balance, and social welfare
maximization.
Our work also focuses on individual profit maximiza-

tion for selfish clouds in federation, and we extend the
problem studied in [4] by considering heterogeneous job
durations. More precisely, the problem formulated in [4]
considers jobs with only one timeslot, which is obviously
not always true in practice. Jobs from users are diverse and
may last for multiple timeslots. We design a novel auc-
tion mechanism and modify the job importance model to
make up its shortcoming. We also propose correspond-
ing job scheduling and server provisioning strategies to
maximize individual profit of each cloud.

Systemmodel and problem formulation
The cloud
We consider a federation with a number, denoted by F,
of clouds distributed in different locations, each of which
operates autonomously to maximize self-interest by intel-

ligently serving its own customers’ job requests, managing
local servers and trading resources with other clouds.
Each cloud i ∈ {1, ..., F} can serve S types of jobs, each

of which is specified by a five-tuple 〈ms, gs, ls, ds,
vs〉. Here, ms ∈ {1, ...M} specifies the type of the required
VM instances of job type s ∈ {1, ..., S}, whereM is themax-
imum number of VM types, and each type corresponds to
a different CPU to memory ratio; gs is the number of type
ms VMs that the job needs simultaneously; ls ∈ {1, ..., L}
and ds stands for the execution time and the service level
agreement (SLA); and vs shows the data volume processed
by type s jobs.
Each cloud runs in a timeslotted fashion. At the begin-

ning of each timeslot t, a lot of job requests are submitted
to cloud i, and rsi (t) ∈ {0, ...,Rs

i} requests for each job type
s are accepted. Rs

i is the upper bound of the quota for
accepting type s job in a timeslot. The process is illustrated
in Fig. 1.
The accepted jobs wait in FIFO queues for scheduling.

psi(t) is the imprest paid by customers when committing
a type s job to cloud i in timeslot t, which covers the
resource usage fee and so on. For each timeslot, cloud i
may schedule some jobs to VMs owned by itself or leased
from other clouds, to avoid drop penalty. Let μs

ij(t) repre-
sents the number of type s jobs of cloud i scheduled for
processing in cloud j at the beginning of timeslot t. To pro-
cess in other clouds, the local data required by the jobs
should be transmitted to target clusters, resulting in the
transmission cost δvs, where δ is the transmission cost for
each unit of data volume. Cloud i will also drop Ds

i(t) type
s jobs according to its current condition and compensate
the customers at a price ξ si , which is no less than the fee
charged to them when accepting the jobs, i.e., ξ si ≥ psi(ta),
where ta is the commit time of the jobs. ForDs

i(t), we have

Ds
i(t) ∈

{
0, ...,Ds(max)

i

}
, (1)

where Ds(max)
i is the upper bound of Ds

i(t). Considering
these actions, we can model the FIFO queue of type s jobs
in cloud i as

Ws
i (t+1)=max

⎧
⎨
⎩W

s
i (t)−

F∑
j=1

μs
ij(t)−Ds

i(t), 0

⎫
⎬
⎭ + rsi (t)

∀s ∈ {1, ..., S} (2)

Considering the required VM volume and estimated
execution time, we further model the importance of
unscheduled type s job requests in cloud i as

Qs
i(t+1)=max

⎧
⎨
⎩Q

s
i(t)−

F∑
j=1

lsgsμs
ij(t) − lsgsDs

i(t), 0

⎫
⎬
⎭

+ lsgsrsi (t) ∀s ∈ {1, ..., S} (3)
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Fig. 3 Determining Winners and Pairing. We only show cloud ID, bid price and duration here. E.g. (0,10,2) stands for cloud 0 bidding price $10 and
duration 2 timeslots

Qs
i will be 0 when the FIFO queue of type s job is

empty, i.e., when all the type s jobs in cloud i are served
or dropped, and no new jobs arrive. Since all the jobs
should be scheduled or dropped to avoid SLA violation,
wemodel the urgency by applying the ε-persistence queue
technique [25] in a virtual queue Zs

i ,∀i ∈ {1, ..., F}, such
that

Zs
i (t+1)=max

⎧⎨
⎩Z

s
i (t)+1{Qs

i (t)>0} ·
⎡
⎣εs−

F∑
j=1

lsgsμs
ij(t)

⎤
⎦

−lsgsDs
i(t)−1{Qs

i (t)=0}ls
F∑
j=1

Cms
j Nms

j , 0

⎫⎬
⎭ ∀s ∈{1, ..., S}

(4)

1{Qs
i (t)>0} =

{
1, if Qs

i(t) > 0
0, otherwise

1{Qs
i (t)=0} =

{
1, if Qs

i(t) = 0
0, otherwise

Here, εs > 0 is a constant and it makes Zs
i accumulate as

time goes by when the type s job queue is not empty. Thus,
the length of this virtual queue approximately reflects the
accumulated response delay of jobs from the respective
job queue. When the job queue is empty, the accumulated

response delay is reduced with ls
F∑
j=1

Cms
j Nms

j . By modify-

ing εs, we are able to bound the lengths of the queues and
hence the maximum response delay can be bounded, i.e.,
the SLA constraint is satisfied [4].
During job execution, the jobs continuously occupy the

required VM resources and generate the operational cost
βi(t) for running a server in cloud i, which mainly consists
of electricity cost. Cloud i has Nm

i homogenous servers
to provision VMs of type m ∈ {1, ...,M}, each of which

can provide a maximum of Cm
i VMs of its type. Let nmi (t)

be the number of active servers provisioning type m VMs
at cloud i in t. The feasible job scheduling at time t is
constrained by active servers and their capabilities, i.e.,

nmi (t) ≤ Nm
i ∀m ∈ {1, ...,M} (5)

∑
s:ms=m,s∈{1,...,S}

t∑
τ=t−ls

F∑
j=1

gsμs
ji(τ ) ≤Cm

i · nmi (t)

∀m ∈ {1, ...,M}
(6)

Equation (5) ensures that the number of active type m
servers cannot exceed the total number of avaiable type
m servers at each cloud. Equation (6) points out that the
required number of type m VMs of unfinished jobs and
newly scheduled jobs from cloud i itself and others should
be within the capacity of corresponding active servers.

Virtual machine trading in cloud federation
As a federation, clouds are willing to cooperate with
each other while as individual entities, they concern their
own benefits. Under normal circumstances, for high load
clouds, they may need more VMs to avoid dropping too
many jobs and the low load ones may have idle VMs on
sale. In fact, only if the price is reasonable, the clouds will
also sell the resources regardless of the workload condi-
tion to maximize their economic benefits. Since there are
generally more than one buyer and one seller, a double
auction mechanism is naturally suitable for implement-
ing efficient trading in this case, allowing both buying and
selling clouds to actively participate in pricing, on behalf
of their own benefits. In our dynamic systems, a multi-
unit double auction is carried out among the clouds at the
beginning of each timeslot.
In an auction, there are three roles for the participants.
Buyers and Sellers: A cloud can be both a seller and

a buyer. A buy bid 〈bmi (t),αm
b,i(t), ι

m
b,i(t)〉 records the unit

price, maximum quantity and longest lease time, at which
cloud i is willing to buy VMs of type m in t. Similarly,
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〈smi (t),αm
s,i(t), ιms,i(t)〉 is a sell bid. The buy and sell bids will

be sent to the auctioneer at the beginning of timeslot t.
Let b̃mi (t) and s̃mi (t) be cloud i’s true valuation of buy

price and sell price for a typemVM respectively. Similarly,
let α̃m

b,i(t) and α̃m
s,i(t) be cloud i’s true valuation of the max-

imum volume of VMs it willing to purchase or sell. Also,
let ˜ιmb,i(t), ˜ιms,i(t) be cloud i’s true valuation of the maximum
duration it willing to purchase or sell such volume of VMs.
Aiming at maximizing its own profit, a cloud may cheat in
bidding. To avoid this, we propose a truthful double auc-
tion mechanism in “Double auction mechanism” section,
which guarantees the cheaters won’t obtain more profits
than bidding honestly.
Auctioneer: We assume that there is a broker, acting

as an auctioneer in the cloud federation. After collecting
all the buy and sell bids, the auctioneer carries out the
double auction in “Double auction mechanism” section
to decide the buyer and seller winners, their deal prices
and the upper bound of the quantities of VMs to trade in
each VM type m. Let b̂mi (t) and ŝmi (t) be the deal prices
for cloud i to buy and sell a type m VM respectively. The
buyer will determine final purchase quantity of VMs and
corresponding lease periods, constrained by their upper
bounds.
Let α

m,l
ij (t) be the number of type m VMs that cloud

i purchases from cloud j for l slot(s) since t, ∀i, j ∈
{1, ..., F}, i �= j.

αm
ij (t) =

L∑
l=1

α
m,l
ij (t) ∀m ∈ {1, ...,M} (7)

γ̂m
i (t) =

∑
j �=i

L∑
l=1

lαm,l
ij (t) ∀m ∈ {1, ...,M} (8)

η̂mi (t) =
∑
j �=i

L∑
l=1

lαm,l
ji (t) ∀m ∈ {1, ...,M} (9)

γ̂m
i (t) is the real quantity and corresponding duration of

VMs purchasing from other clouds in timeslot t and η̂mi (t)
is the quantity and duration selling to other clouds.
Since VMs are purchased for serving jobs, the job

scheduling decisions μs
ij(t) at each cloud i ∈ {1, ..., F} are

constrained by the number of VMs it purchases
∑

s:s∈{1,...,S},ms=m,ls=l
gsμs

ij(t) = α
m,l
ij (t) (10)

∀m ∈ {1, ...,M},
∀l ∈ {1, ..., L},
∀i, j ∈ {1, ..., F}, i �= j

To make the auctioneer’s mechanism practical, three
economic properties are required. 1) Truthfulness: Both
bidder strategies and auction design will be simplified if

bidding true valuation is a dominant strategy for the par-
ticipants. 2) Individual Rationality: Only if each cloud is
able to obtain a nonnegative profit from the auction, they
will participate in it. 3) Ex-post Budget Balance: The auc-
tioneer won’t host the aution unless it has a nonnegative
surplus, i.e., the total payment from the buy winners is no
less than the total charge asked by the seller winners in
each timeslot.

Individual profit definition
Each cloud in the federation aims at maximizing its time-
averaged profit over the long run, while trying to satisfy
the resource and SLA requirements of each job.
Income: A cloud can earn income in two ways: 1) to

charge customers for serving their job requests and 2)
to sell VM resources to other clouds. The time-averaged
income of cloud i ∈ {1, ..., F} from serving their job
requests is

�i
1 = lim

T→∞
1
T

T−1∑
t=0

S∑
s=1

E{psi(t) · rsi (t)} (11)

We assume the charges psi(t) of service s ∈ {1, ..., S} in
each timeslot t are given. Since the arriving rates rsi (t) are
determined by the number of job requests accepted at the
beginning of timeslot t, this part of income can be regard
as fixed in each time.
The time-averaged income of cloud i ∈ {1, ..., F} from

selling VM resources is

�i
2 = lim

T→∞
1
T

T−1∑
t=0

M∑
m=1

E{ŝmi (t) · η̂mi (t)} (12)

Cloud i can increase this income by strategically propos-
ing sell bids, i.e., smi (t), αm

s,i(t) and ιms,i(t)(∀m ∈ {1, ...,M}),
at each time. Although αm

s,i(t) is not directly related to this
income, a larger αm

s,i(t) somehow indicates a larger μs
ji(t),

which raises this income potentially.
Cost:A cloud has four kinds of expenditure: 1) the oper-

ational cost of active servers, which mainly consists of
electricity cost, 2) the payment of buying VM resources,
3) the transmission cost of delivering data to other clouds
when scheduling jobs to them, and 4) the penalty for drop-
ping jobs. The time-averaged operational cost of active
servers of cloud i ∈ {1, ..., F} is

� i
1 = lim

T→∞
1
T

T−1∑
t=0

M∑
m=1

E{βi(t) · nmi (t)} (13)

which is generated by the active servers in each timeslot.
The time-averaged payment of buying VM resources of
cloud i ∈ {1, ..., F} is

� i
2 = lim

T→∞
1
T

T−1∑
t=0

M∑
m=1

E{b̂mi (t) · γ̂m
i (t)} (14)
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Table 3 Bid Related Notations

bmi (t) Buy price bid by cloud i, slot t

smi (t) Sell price bid by cloud i, slot t

αm
b,i(t) Intentional purchase quantity of typem VMs by cloud i, slot t

αm
s,i (t) Intentional selling quantity of typem VMs by cloud i, slot t

ιmb,i(t) Max. # of lease time requested by cloud i, slot t

ιms,i (t) Max. # of lease time allowed by cloud i, slot t

Similar to �i
2, cloud i can reduce this expenditure by

adjusting its buy bids, i.e., bmi (t), αm
b,i(t) and ιmb,i(t)(∀m ∈

{1, ...,M}), at each time. The time-averaged cost for trans-
mitting data of cloud i ∈ {1, ..., F} is determined by
the data volume and number of jobs scheduling to other
clouds, i.e.,

� i
3 = lim

T→∞
1
T

T−1∑
t=0

S∑
s=1

E{δvs
∑
j �=i

μs
ij(t)} (15)

The time-averaged penalty for dropping jobs of cloud i ∈
{1, ..., F} is related to the volume of dropped jobs, i.e.,

� i
4 = lim

T→∞
1
T

T−1∑
t=0

S∑
s=1

E{ξ si · Ds
i(t)} (16)

Profit Maximization: The profit maximization problem
at cloud i ∈ {1, ..., F} can be formulated as follows:

max �i
1 + �i

2 − � i
1 − � i

2 − � i
3 − � i

4
s.t. Constraints (1), (5) - (10)

(17)

Cloud information notations are summarized in Table 1.

Double auctionmechanism
Overview
During each timeslot, the entire VM trading framework is
depicted in Fig. 2, and works as follows.

• Step 1: Each cloud evaluates its true valuations of sell
prices, buy prices and corresponding volume of
different types of VMs, and submits them to the
auctioneer.

• Step 2: After collecting the bids, the auctioneer
executes the double auction to determine the seller
and buyer winners in the current round.

• Step 3: The actual valuations of buy and sell prices
ofzthe winners are decided by the auctioneer, and the

upper bounds of VM volume to trade are also given
by it.

• Step 4: Based on the auction result, the buy winners
reports the actual buying VM volume to the
auctioneer and the auctioneer finally sends the actual
selling VM volumes to the sell winners respectively.

• Step 5: Each cloud makes its job scheduling and server
provisioning plan according to the transaction result.

Our double auction mechanism is used in Step 2 - 4 to
decide winners, auction and to release result.

Three phases of double auction mechanism
We firstly design a double auction mechanism which can
select pairs of buyer and seller winners to trade virtual
machines for different durations for inter-cloud VM trad-
ing. Auction related notations are summarized in Table 2.
After collecting the bids from all clouds in the federa-

tion, the auctioneer carries out the following mechanism
to decide the actual trading price for each type of VMs.
1) Determining Winners and Pairing: This phase is car-

ried out in Step 2 of the auction mechanism. Firstly,
the auctioneer discards bids from the clouds whose
sell bid price is lower than its buy bid price. Then it
sorts the remaining buy (sell) bids in non-ascending (-
descending) order by the buy (sell) prices, and if the
prices are the same, sorts them by durations in descend-
ing order. Let us denote the ordered buy prices for
type m VM as λm1 (t), λm2 (t), ..., λmF (t), and sell prices as
ζm
1 (t), ζm

2 (t), ..., ζm
F (t). The auctioneer then traverses the

sequence until λmk (t) < ζm
k (t). If k > 2, then the clouds

whose buy price (sell price) ranking from [ 1, k − 2] are
buyer (seller) winners, as illustrated in Fig. 3 (b), where
k = 5 and 3 pairs of winners are selected. On the contrary,
no cloud win if k ≤ 2.
We match the buyer and seller winners according to

different durations. We again sort the winners’ bids by

Table 4 Schedule Related Notations

μs
ij(t) # of type s jobs scheduled from cloud i to j in slot t

Ds
i (t) # of dropped type s jobs at cloud i, slot t

nmi (t) # of active servers hosting typem VMs at cloud i, slot t

α
m,l
ij (t) # of typem VMs bought by cloud i from j for l slot(s)
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Fig. 4 The quantity of jobs with respect to number of VM and execution time

durations in a descending order. Although intuitively sim-
ply match them one by one is applicable, it may result
in that no paricipants are fully satisfied. For example, the
request of buyer winners requesting for 5, 3, 2 timeslots
will match the seller winners offering 3, 2, 1 timeslots
respectively, such that all the buyer winners can only buy
resources for their less important jobs or even buy none.
Therefore, for each buyer winner, we choose to match

it to the first unmatched seller winner whose ιms,i(t) is
not shorter than the buyer’s requirement, i.e., ιmb,j(t). As a
result, if a buyer winner’s requirement is longer than the
offer of all seller winners, it cannot buy any resource, as
shown in Fig. 3 (c). What’s more, the k − 1 buyer can
become a buyer winner if it has the same bid price as an
unmatched buyer winner and its time request can pair
an unmatched seller winner. As illustrated in Fig. 3 (d),
Cloud 6’s bid price is equal to Cloud 2, while its request
time can match with Cloud 5, so it becomes the win-
ner and Cloud 2 loses. After the adjustment, more buyer
winners can be paired with their best matched seller win-
ners. If a cloud is finally paired with itself, it is judged to
lose.

2) Determining Deal Price and Volume Upper Bound:
This phase is carried out in Step 3 of the auction mech-
anism. When k > 2, let P = λmk−1(t)+ζmk−1(t)

2 . The price
charged to each buyer cloud i of typem VMs is

b̂mi (t) =
{
P, if bid bmi (t) wins
0, otherwise

(18)

The price paid to each seller cloud i of typem VMs is

ŝmi (t) =
{
P, if bid smi (t) wins
0, otherwise

(19)

To ensure each buyer and seller winner can be involved
in the transaction, we match them in pairs, i.e., the
buyers bidding λmκ (t) buy VMs from the sellers bidding
ζm
κ (t)(∀κ ≤ k − 2). Therefore, the upper bound of pur-
chasing volume of each buyer cloud i can be determined
as

αm
ij (t) =

{
αm
s,j(t), if buyer imatches with seller j

0, otherwise
(20)
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Fig. 5 Comparison of individual profits with different values of V. (a) V = 0.5 × 105, (b) V = 2 × 105, (c) V = 3.5 × 105, (d) V = 5 × 105
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Fig. 6 Comparison of average profit for our algorithm with different values of V

Then, these values will be sent to corresponding clouds to
help them make their final scheduling decisions at time t.
3) Announcing Result: This phase is carried out in Step

4 of the auction mechanism. When the final schedul-
ing decision is made, each buyer cloud i will submit the
final purchasing volume α̂

m,l
ij (t) and corresponding lease

period l(l ≤ ιms,j(t)), adding up to α̂m
ij (t), which is restricted

by the upper bound. Then γ̂m
i (t) is determined. The auc-

tioneer will notify the corresponding seller clouds with
the values as the final selling volumes and corresponding
durations. And η̂mj (t) can be obtained at the same time.

Properties of the double auction mechanism
We now show that our double auction mechanism can
meet the requirement of economic properties specified
at the end of “Virtual machine trading in cloud fede-
ration” section.

Proof of truthfulness
Lemma 1 (Monotonic Winner Determination). Given
prices of buy bids {bm1 (t), ..., bmi (t), ..., bmF (t)} and sell bids
{sm1 (t), ..., smi (t), ..., smF (t)}, we have that
1) If cloud i wins the buy bid by bidding with bmi (t),

then cloud i also wins the buy bid by bidding with
b′ > bmi (t);

2) If cloud i wins the sell bid by bidding with smi (t), then
cloud i also wins the sell bid by bidding with
s′ < smi (t).

Proof We prove the lemma according to two possible
cases as below:

1) Since cloud i wins the buy bid with bmi (t), we know
that bmi (t) is larger than bmk−1(t). With b′ > bmi (t), we
have that b′ > λmk−1(t). Hence, if cloud i proposes a
buy bid with b′, it can still win the buy bid according
to our winner determination decision.

2) Since cloud i wins the sell bid with smi (t), we know
that smi (t) is smaller than smk−1(t). With s′ < smi (t), we
have that s′ < ζm

k−1(t). Hence, if cloud i proposes a
sell bid with s′, it can still win the sell bid according
to our winner determination decision.

Lemma 2 (Role Incompatibility). Cloud i cannot be both
a buyer winner and a seller winner at the same time, unless
its buy bid price equals to sell bid price.

Proof We prove the lemma according to possible cases
as below:

1. If cloud i ’s buy bid price is higher than sell bid price,
it won’t win because its bids are discarded.

2. If cloud i ’s buy bid price is lower than sell bid price,
we discuss two cases as follows.

• If cloud i wins with its buy bid bmi (t), i.e.,
bmi (t) ≥ λmk−1(t) ≥ ζm

k−1(t), sell bid will lose
when smi (t) > bmi (t) ≥ ζm

k−1(t).
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• If cloud i wins with its sell bid smi (t), i.e.,
smi (t) ≤ ζm

k−1(t) ≤ λmk−1(t), buy bid will lose
when bmi (t) < smi (t) ≤ λmk−1(t).

3. If cloud i wins with both its buy and sell bid
bmi (t), smi (t), we have bmi (t) = smi (t), since
bmi (t) ≥ λmk−1 ≥ ζm

k−1 ≥ smi (t) and smi (t) ≥ bmi (t).

Lemma 3 (Lies-unfriendly Pricing). Give prices
of buy bids {bm1 (t), ..., bmi (t), ..., bmF (t)} and sell bids
{sm1 (t), ..., smi (t), ..., smF (t)}, we have that
1. If cloud i wins the buy and sell bid by bidding with

bmi (t), smi (t) and still wins by cheating with b′, s′, the
deal price P′ to cloud i is equal to P;

2. If cloud i wins the buy bid by bidding with
bmi (t), smi (t) and still wins buy bid by cheating with
b′, s′, the charged price P′ to cloud i won’t be lower
than P;

3. If cloud i wins the sell bid by bidding with smi (t), bmi (t)
and still wins sell bid by cheating with s′, b′, the paid
price P′ to cloud i won’t be higher than P;

4. If cloud i loses the buy bid by bidding with
bmi (t), smi (t) while wins buy bid by cheating with
b′, s′, the charged price P′ to cloud i won’t be lower
than its original valuation, i.e., bmi (t);

5. If cloud i loses the sell bid by bidding with
smi (t), bmi (t) while wins sell bid by cheating with s′, b′,
the paid price P′ to cloud i won’t be higher than its
original valuation, i.e., smi (t).

Proof Let P′, k′, λ′m
k′ (t), ζ ′m

k′ (t) be the corresponding deal
price, sorted rank, sorted buy bid and sorted sell bid, when
cloud i cheats with b′, s′. We prove the cases in the lemma
respectively as follows,

1. Since cloud i wins both the buy and sell bid with
bmi (t), smi (t), we have
bmi (t) = smi (t) = λmk−1(t) = ζm

k−1(t), according to
Lemma 2. In the same way, we have
b′ = s′ = λ′m

k′−1(t) = ζ ′m
k′−1(t). Since this does not

influence the sorting result, we have
λ′m
k′−1(t) = ζ ′m

k′−1(t) = λmk−1(t) = ζm
k−1(t), so P′ = P.

In fact, in this case, there is no cheating.
2. Since cloud i wins the buy bid with bmi (t), the

charged price P = λmk−1(t)+ζmk−1(t)
2 , λmk−1(t) ≤ bmi (t). If

sell bid s′ still loses, it will not influence the sorting
result, so we have λ′m

k′−1 = λmk−1(t), since the number
of winners remains the same. When s′ > ζ ′m

k′−1(t), we
have ζ ′m

k′−1(t) = ζm
k−1(t), thus P

′ = P. When
s′ = ζ ′m

k′−1(t) ≥ ζm
k−1(t), we will have P

′ ≥ P.
However, we know b′ ≥ λ′m

k′−1(t) ≥ ζ ′m
k′−1(t) = s′ and

s′ ≥ b′. Thus,

s′ = ζ ′m
k′−1(t) = λ′m

k′−1(t) = λmk−1(t) = ζm
k−1(t), i.e.,

P′ = P. If sell bid s′ wins, according to Lemma 2, we
have b′ = s′ = ζ ′m

k′−1(t) = λ′m
k′−1(t). Also, we have

ζ ′m
k′−1(t) = ζm

k−2(t) ≤ ζm
k−1(t) ≤ λmk−1(t) and

λ′m
k′−1(t) = λmk−1(t). Thus,

ζ ′m
k′−1(t) = λ′m

k′−1(t) = ζm
k−1(t) = λmk−1(t), i.e., P

′ = P.
Therefore the charged price P′ is no less than P.

3. Since cloud i wins the sell bid with smi (t), the paid
price P = λmk−1(t)+ζmk−1(t)

2 , ζm
k−1(t) ≥ smi (t). If buy bid

b′ still loses, it will not influence the sorting result, so
we have ζ ′m

k′−1(t) = ζm
k−1(t), since the number of

winners remains the same. When b′ < λ′m
k′−1(t), we

have λ′m
k′−1(t) = λmk−1(t), thus P

′ = P. When
b′ = λ′m

k′−1(t) ≤ λmk−1(t), we will have P
′ ≤ P.

However, we know s′ ≤ ζ ′m
k′−1(t) ≤ λ′m

k′−1(t) = b′ and
s′ ≥ b′. Thus,
b′ = λ′m

k′−1(t) = ζ ′m
k′−1(t) = ζm

k−1(t) = λmk−1(t), i.e.,
P′ = P. If buy bid b′ wins, according to Lemma 2, we
have b′ = s′ = λ′m

k′−1(t) = ζ ′m
k′−1(t). Also, we have

λ′m
k′−1(t) = λmk−2(t) ≥ λmk−1(t) ≥ ζm

k−1(t) and
ζ ′m
k′−1(t) = ζm

k−1(t). Thus,
ζ ′m
k′−1(t) = λ′m

k′−1(t) = ζm
k−1(t) = λmk−1(t), i.e., P

′ = P.
Therefore the paid price P′ is no more than P.

4. Since cloud i loses the buy bid with bmi (t), we have
λmk−1(t) ≥ bmi (t) and P ≥ bmi (t). Since cloud i wins
the buy bid with b′, we have b′ ≥ λ′m

k′−1(t). If the
number of winners remains the same, we have
λ′m
k′−1(t) ≥ λmk−1(t) and ζ ′m

k′−1(t) = ζm
k−1(t), thus

P′ ≥ P ≥ bmi (t). If the number of winners changes,
i.e., one more buy and sell winner, we have
λ′m
k′−1(t) = λmk−1(t) and ζ ′m

k′−1(t) ≥ ζm
k−1(t), thus

P′ ≥ P ≥ bmi (t). Therefore the charged price P′ is no
less than the true valuation of buy bid.

5. Since cloud i loses the sell bid with smi (t), we have
ζm
k−1(t) ≤ smi (t) and P ≤ smi (t). Since cloud i wins
the sell bid with s′, we have s′ ≤ ζ ′m

k′−1(t). If the
number of winners remains the same, we have
ζ ′m
k′−1(t) ≤ ζm

k−1(t) and λ′m
k′−1(t) = λmk−1(t), thus

P′ ≤ P ≤ smi (t). If the number of winners changes,
i.e., one more buy and sell winner, we have
ζ ′m
k′−1(t) = ζm

k−1(t) and λ′m
k′−1(t) ≤ λmk−1(t), thus

P′ ≤ P ≤ smi (t). Therefore the paid price P′ is no
more than the true valuation of sell bid.

Theorem 1 (Truthfulness). Bidding truthfully is the dom-
inant strategy of each cloud in the double auction mecha-
nism, i.e., no cloud can achieve a higher profit by bidding
with values other than its true valuation of the buy and sell
bids.
According to Lemma 1, 2, 3, we can then prove

Theorem 1. To prove this, all the combination of auction
result with truthful and untruthful buy/sell bidding should
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be considered. We will prove two representative situation
of them and the rest is similar.

Proof Case 1:Cloud iwins both buy bid and sell bid with
truthful bidding bmi (t), smi (t):

1. When it lies with b′ > bmi (t), s′ ≥ smi (t), it wins buy
bid while loses sell bid according to Lemma 1 and
Lemma 2. According to 2) in Lemma 3, the charged
price for buy bid won’t be lower than P, while we
cannot sell resources, which results in non-positive
utility gain.

2. When it lies with b′ > bmi (t), s′ < smi (t), it either
wins buy bid or sell bid. Aaccording to 2) and 3) in
Lemma 3, when buy bid wins, the charged price for
buy bid won’t be lower than P, while we cannot sell
resources. When sell bid wins, the paid price for sell
bid won’t be higher than P, while we cannot buy
resources. This two situations both result in
non-positive utility gain.

3. When it lies with b′ = bmi (t), s′ > smi (t), it wins buy
bid while loses sell bid. According to 2) in Lemma 3,
the charged price for buy bid won’t be lower than P,
while we cannot sell resources, which results in
non-positive utility gain.

4. When it lies with b′ = bmi (t), s′ < smi (t), it wins sell
bid while loses buy bid. According to 3) in Lemma 3,
the paid price for sell bid won’t be higher than P,
while we cannot buy resources, which results in
non-positive utility gain.

5. When it lies with b′ < bmi (t), s′ > smi (t), it either
wins buy bid or sell bid, and may even lose both.
Aaccording to 2) and 3) in Lemma 3, when buy bid
wins, the charged price for buy bid won’t be lower
than P, while we cannot sell resources. When sell bid
wins, the paid price for sell bid won’t be higher than
P, while we cannot buy resources. When they both
lose, they cannot buy or sell resources. This three
situations all result in non-positive utility gain.

6. When it lies with b′ < bmi (t), s′ ≤ smi (t), it wins sell
bid while loses buy bid. According to 3) in Lemma 3,
the paid price for sell bid won’t be higher than P,
while we cannot buy resources, which results in
non-positive utility gain.

Case 2: Cloud i loses both buy bid and sell bid
with truthful bidding bmi (t), smi (t): In this case, the
charged/paid prices for buy bid and sell bid of winneres
are both P, where P ≥ bmi (t),P ≤ smi (t).

1. When it lies with b′ ≤ bmi (t), s′ ≥ smi (t), it still loses
buy bid and sell bid, which results in zero utility gain.

2. When it lies with b′ ≤ bmi (t), s′ < smi (t), it still loses
buy bid. If it also still loses sell bid, it results in zero
utility gain. If it wins the sell bid, the paid price for
sell bid won’t be higher than smi (t) according to 5) in
Lemma 3, which results in non-positive utility gain.

3. When it lies with b′ > bmi (t), s′ > smi (t), it still loses
sell bid. If it also still loses buy bid, it results in zero
utility gain. If it wins the buy bid, the charged price for
buy bid won’t be lower than bmi (t) according to 4) in
Lemma 3, which results in non-positive utility gain.

4. When it lies with b′ > bmi (t), s′ ≤ smi (t), there are
four possibile results. If it also still loses both bids, it
results in zero utility gain. If it wins buy bid while
loses sell bid, the charged price for buy bid won’t be
lower than bmi (t) according to 4) in Lemma 3, which
results in non-positive utility gain. If it wins sell bid
while loses buy bid, the paid price for sell bid won’t
be higher than smi (t) according to 5) in Lemma 3,
which results in non-positive utility gain. If it wins
buy bid and sell bid, the charged(paid) price for
buy(sell) bid won’t be lower(higher) than
bmi (t)(smi (t)) according to 4) and 5) in Lemma 3,
which results in non-positive utility gain.

Proof of individual rationality
Theorem 2 (Individual Rationality). No winning buyer
pays more than its buy bid price, and no winning seller is
paid less than its sell bid price, i.e., b̂mi (t) ≤ bmi (t) and
ŝmi (t) ≥ smi (t),∀i ∈ {1, ..., F},m ∈ {1, ...,M}.

Proof We prove the cases in the theorem respectively as
follows,

1. For the buyer winners, their actual buy prices are
b̂mi (t) = λmk−1(t)+ζmk−1(t)

2 . According to the auction
mechanism, let λml (t) = bmi (t), we also have
λml (t) ≥ λmk−1(t) and λmk−1(t) ≥ ζm

k−1(t), thus
2λml (t) ≥ λmk−1(t) + ζm

k−1(t), i.e.,

bmi (t) = λml (t) ≥ λmk−1(t)+ζmk−1(t)
2 = b̂mi (t).

2. For the seller winners, their actual sell prices are
ŝmi (t) = λmk−1(t)+ζmk−1(t)

2 . According to the auction
mechanism, let ζm

l (t) = smi (t), we also have
ζm
l (t) ≤ ζm

k−1(t) and ζm
k−1(t) ≤ λmk−1(t), thus

2ζm
l (t) ≤ λmk−1(t) + ζm

k−1(t), i.e.,

smi (t) = ζm
l (t) ≤ λmk−1(t)+ζmk−1(t)

2 = ŝmi (t).

The individual rationality provides incentives for indi-
vidual clouds to participate in the auction for inter-cloud
VM trading.
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Proof of ex-post budget balance
Theorem 3 (Ex-post Budget Balance). At the auction-
eer, the total payment collected from the buyers is no
smaller than the overall price paid to the sellers, i.e.,
F∑
i=1

[ b̂mi (t)γ̂m
i (t) − ŝmi (t)η̂mi (t)]≥ 0,∀m ∈ {1, ...,M}.

Proof We prove the cases in the theorem as fol-
lows, According to the auction mechanism, we have∑F

i=1 γ̂m
i (t) = ∑F

i=1 η̂mi (t) and b̂mi (t) = ŝmi (t) =
P,∀m ∈ {1, ...,M}. Therefore, the payment from the
buyers is equal to the selling income of the sellers, i.e.,∑F

i=1 b̂mi (t)γ̂m
i (t) = ∑F

i=1 ŝmi (t)η̂mi (t),∀m ∈ {1, ...,M}.
Thus

∑F
i=1 b̂mi (t)γ̂m

i (t) − ∑F
i=1 ŝmi (t)η̂mi (t) ≥ 0,∀m ∈

{1, ...,M}.

Pricing and scheduling
With the properties of the auction mechanism, each cloud
will bid truthfully to maximize its own profit in each
timeslot so as to maximize its time-averaged profit. To
find out the true valuation of the bid, we apply the drift-
plus-penalty framework in Lyapunov optimization theory
[26] and derive a one-shot optimization problem to be
solved by cloud i in each timeslot t as follows.

One-Shot optimization
The set of queues at cloud i in each timeslot t is defined as

�i(t) = {
Qs
i(t),Zs

i (t)|s ∈ {1, ..., S}} ,

where Qs
i(t) and Zs

i (t) are defined in (3) and (4) respec-
tively. Since the job scheduling/dropping decisions deter-
mine the updates of importance queues and virtual queues
simultaneously, we jointly consider both queues in the
Lyapunov optimization framework and define the Lya-
punov function as follows:

L(�i(t)) = 1
2

S∑
s=1

[
(Qs

i(t))
2 + (Zs

i (t))
2] .

Then, the one-shot conditional Lyapunov drift is

�(�i(t)) = L (�i(t + 1)) − L (�i(t)) .

In the best case, the clouds are supposed to serve all jobs
immediately after they arrive, which leads to �(�i(t)) =
0. Thus, to pursuit the best situation, we should minimize
�(�i(t)). However, minimizing �(�i(t)) is difficult and
instead we try to minimize the upper bound. Squaring
the queuing laws (3) and (4), we can derive the following
inequality,

�(�i(t)) − V
{ M∑
m=1

[
ŝmi (t)η̂mi (t) − βi(t)nmi (t)

−b̂mi (t)γ̂m
i (t)

]

+
S∑

s=1

⎡
⎣psi(t)r

s
i (t) − Ds

i(t)ξ
s
i −

∑
j �=i

δμs
ij(t)vs

⎤
⎦

⎫
⎬
⎭

≤ Bi +
S∑

s=1

[
Qs
i(t)lsgsr

s
i (t) + Zs

i (t)εs − V · psi(t)rsi (t)
]

− ϕi
1(t) − ϕi

2(t) − ϕi
3(t) − ϕi

4(t), (21)

where V > 0 is a user-defined positive parameter for
gauging the optimality of time-averaged profit,

Bi =1
2

S∑
s=1

⎧
⎪⎨
⎪⎩

⎡
⎣

F∑
j=1

lsgsμmax + lsgsDs(max)
i

⎤
⎦
2

+ [
lsgsRs

i
]2

+
⎡
⎣εs]2 +[ lsgsDs(max)

i +
F∑
j=1

lsgsμmax

⎤
⎦
2
⎫
⎪⎬
⎪⎭

is a constant, and

ϕi
1(t) =

F∑
j=1

S∑
s=1

lsgsμs
ij(t)[Qs

i(t) + Zs
i (t)]

ϕi
2(t) =

S∑
s=1

Ds
i(t)[ lsgsQs

i(t) + lsgsZs
i (t) − V · ξ si ]

ϕi
3(t) = V

M∑
m=1

[ ŝmi (t)η̂mi (t) − βi(t)nmi (t) − b̂mi (t)γ̂m
i (t)]

ϕi
4(t) = −Vδ

∑
j �=i

S∑
s=1

μs
ij(t)vs

Based on the drift-plus-penalty framework, a dynamic
algorithm can be derived for each cloud i, which jointly
considers the set of queues �i(t), job arrival rates
rsi (t),∀s ∈ {1, ..., S}, and the current cost for server opera-
tion βi(t) in each timeslot. By minimizing the right hand
side (RHS) of the inequality (21), a lower bound for time-
averaged profit of cloud i is maximized. Note that Bi +
S∑

s=1

[
Qs
i(t)lsgsr

s
i (t) + Zs

i (t)εs − V · psi(t)rsi (t)
]
in the RHS of

(21) is fixed in timeslot t. Hence, to maximize the lower
bound of the time-averaged profit for cloud i, the dynamic
algorithm should solve the one-shot optimization prob-
lem in each timeslot t as follows:
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max ϕi
1(t) + ϕi

2(t) + ϕi
3(t) + ϕi

4(t)
s.t. Constraints (1)-(10).

(22)

The maximization problem in (22) can be decoupled
into two independent problems defined in (23) and (24).
The first one is

max ϕi
1(t) + ϕi

3(t) + ϕi
4(t)

s.t. Constraints (2)-(10).
(23)

which is related to optimal decision on: 1) buy/sell prices
for different types of VMs, 2)provisioning of active servers
and 3) scheduling of jobs.

max ϕi
2(t)

s.t. Constraints (1)-(4),
(24)

which is related to optimal decison on jobs to drop. In the
following we design algorithms to derive the optimal bid
decisions based on problems (23) and (24). Since the auc-
tion mechanism ensures truthfulness, the clouds cannot
achieve a higher profit by bidding with values other than
its true value. On the contrary, their bids may be denied if
they lie, resulting in no profit. Therefore, the optimal bids
are decided by their true valuation independently. Once
the true value is found and bid with, the individual cloud
should have already achieved the best it could obtain from
problem (23). The job scheduling, job dropping and server
provisioning is just a follow-up action once it gets the
auction results. Bid related notations are summarized in
Table 3.

VM valuation and bid
Prices
Optimization problem (23) is related to the actual
unit prices that trades each type of VMs, b̂mi (t) and
ŝmi (t) (∀m ∈ {1, ...,M}) from the double auction. Adding
the avaiable numbers and corresponding lease time of
each type of VMs, γ̂m

i (t) and η̂mi (t) (∀m ∈ {1, ...,M}) can
be acquired. Thus, we first investigate how each cloud pro-
poses its buy bids and sell bids, and then decide optimal
job scheduling and server provisoning in “Job scheduling
and server provisioning” section.
Since (33) represents the minimum number of active

servers and is presented by the scheduling decision and
the quantity of sold VMs, it can be decided beforehand.
Subtituting (8), (9), (10)and (33) into (23), we have:

max
F∑
j=1

S∑
s=1

lsgsμs
ij(t)

[
Qs
i(t) + Zs

i (t)
]

+ V
M∑

m=1

⎧⎨
⎩ŝmi (t)

∑
j �=i

∑
s:s∈{1,...,S},ms=m

lsgsμs
ji(t)

−βi(t)

⎡
⎢⎢⎢⎢⎢⎢⎢

F∑
j=1

S∑
s=1

[
t−1∑

τ=t−ls
gsμs

ji(τ ) + gsμs
ji(t)

]

Cm
i

⎤
⎥⎥⎥⎥⎥⎥⎥

(25)

−b̂mi (t)
∑
j �=i

∑
s:s∈{1,...,S},ms=m

lsgsμs
ij(t)

⎫
⎬
⎭

− Vδ
∑
j �=i

S∑
s=1

μs
ij(t)vs

Since βi(t) is a given constant in t, we can remove the ceil-
ing function and adjust the form to consider each type of
VMs seperately. For type s service using type m VMs, the
problem is

max
∑
j �=i

∑
s:ms=m

lsgsμs
ij(t)

[
Qs
i(t)+Zs

i (t)−Vb̂mi (t)−Vδvs
lsgs

]

+
∑
j �=i

∑
s:ms=m

lsgsμs
ji(t)

[
Vŝmi (t) − Vβi(t)

lsCm
i

]

+
∑

s:ms=m
lsgsμs

ii(t)
[
Qs
i(t) + Zs

i (t) − Vβi(t)
lsCm

i

]
+ C,

(26)

where C = −βi(t)

F∑
j=1

∑
s:ms=m

t−1∑
τ=t−ls

μs
ji(τ )

Cm
i

Since the scheduling numbers μs
i,j(t), ∀j ∈ {1, ..., F} are

nonnegative, to maximize (26), the factors of should be
nonnegative too, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qs
i(t) + Zs

i (t) − Vbmi (t) − Vδvs
lsgs

≥ 0,

Vsmi (t) − Vβi(t)
lsCm

i
≥ 0,

Qs
i(t) + Zs

i (t) − Vβi(t)
lsCm

i
≥ 0.
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Thus, we can get

ˆ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bmi (t) ≤ lsgsQs
i(t) + lsgsZs

i (t) − Vδvs
Vlsgs

, (27a)

ŝmi (t) ≥ βi(t)
lsCm

i
, (27b)

Qs
i(t) + Zs

i (t) ≥ Vβi(t)
lsCm

i
. (27c)

We know that when the clouds buy resources, the lower
payment is the better, which is also pointed out by (27a).
However, due to the auction mechanism, cloud imust win
the right to purchase VM resources first, which intrinsi-
cally requires higher buy bid price. Considering these two
facts, we have

b̃mi (t) = ls∗mgs∗mQ
s∗m
i (t) + ls∗mgs∗mZ

s∗m
i (t) − Vδvs∗m

Vls∗mgs∗m
, (28)

s∗m = arg max
s′∈{1,...,S},ms′=m

ls′gs′Qs′
i (t) + ls′gs′Zs′

i (t) − Vδvs′
ls′gs′

As for sell price, it must cover the operational cost in the
first place, as showed in (27b), which should be held for all
services using typem VM resources, thus ŝmi (t) ≥ βi(t)

Cm
i
. In

addition, cloud i will sell VM resources only if it can get
more utility than using them by itself, i.e., when ŝmi (t) ≥

Qs
i (t)+Zs

i (t)
V . Considering these two reasons, we have

s̃mi (t) = max
{
Qs∗m
i (t) + Zs∗m

i (t)
V

,
βi(t)
Cm
i

}
,

s∗m = arg max
s′∈{1,...,S},ms′=m

Qs′
i (t) + Zs′

i (t)
(29)

Volumes of resources
The true value of the number of type m VMs to buy and
to sell at cloud i are

α̃m
b,i(t) =

∑
s:ms=m

gsWs
i (t) (30)

α̃m
s,i(t) = Cm

i Nm
i −

∑
j �=i

t−1∑
τ=t−L

L∑
l=t−τ

α
m,l
ji (τ )

−
∑

s:ms=m

t−1∑
τ=t−ls

gsμs
ii(τ )

(31)

respectively.When the charge price is reasonable, i.e.,
lower than the true value of type s∗m service, cloud i is will-
ing to schedule them to other clouds to make more profit.
Thus, cloud i would like to ask for as many resources as
it needs, in case the true values of all the services exceed
the charge price, which results in (30). On the other hand,
the actual sell prices will be no lower than bid prices of the
clouds if they win. Therefore, the more we sell the more
extra profits we will obtain, and the upper bound is all
the avaiable resources we have. As presented by (31), the

Fig. 7 Comparison of job drop rate with different values of V
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upper bound is equal to the capacity of typemVMsminus
the ones sold to other clouds and the ones used by itself.
Schedule related notations are summarized in Table 4

Job scheduling and server provisioning
After the second phase of auction, cloud i will receive its
actual buy prices, sell prices (b̂mi (t), ŝmi (t)), and the upper
bounds of the purchasing volumes of VMs, αm

ij (t),∀m ∈
{1, ...,M}.
Server provisioning
We start with deriving nmi (t),∀m ∈ {1, ...,M}, by assum-
ing known values of η̂mi (t), γ̂m

i (t), and α
m,l
ji (t). In this case,

problem (23) is equivalent to the following minimization
problem:

min Vβi(t)
M∑

m=1
nmi (t)

s.t. Constraints (5)-(7) and (10)

(32)

According to (6) and (10), we have

nmi (t) ≥

∑
s:ms=m,s∈{1,...,S}

t∑
τ=t−ls

F∑
j=1

gsμs
ji(τ )

Cm
i

Since the number of active servers should be minimized
and be an integer, we have that

nmi (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢

F∑
j=1

∑
s:ms=m

[
t−1∑

τ=t−ls
gsμs

ji(τ ) + gsμs
ji(t)

]

Cm
i

⎤
⎥⎥⎥⎥⎥⎥⎥
(33)

is the optimal decision of the number of type m active
servers.

Job scheduling
Moving ls into the factors in (26), and we have

max
∑
j �=i

∑
s:ms=m

gsμs
ij(t)

[
lsQs

i(t) + lsZs
i (t) − Vlsb̂mi (t)

−Vδvs
gs

]
+

∑
j �=i

∑
s:ms=m

gsμs
ji(t)

[
Vlsŝmi (t) − Vβi(t)

Cm
i

]

+
∑

s:ms=m
gsμs

ii(t)
[
lsQs

i(t) + lsZs
i (t) − Vβi(t)

Cm
i

]
+ D,

(34)

where D = −βi(t)

F∑
j=1

∑
s:ms=m

t−1∑
τ=t−ls

gsμs
ji(τ )

Cm
i

.
Since the upper bound of the VM resources that

cloud i can rent from other clouds is determined, i.e.,

∑
s:ms=m

gsμs
ij(t) ≤ αm

ij (t), the jobs with higher value should

be scheduled in higher priority to make good use of the
resources. Therefore, we schedule the jobs whose excu-
tion duration ls is less than ιms,j(t) in the descending order
of factor lsQs

i(t) + lsZs
i (t) − Vlsb̂mi (t) − Vδvs

gs until the VM
resources we can buy are used up or the factor is negative.

μs
ij(t) =

{
max{
Rm�,Ws

i (t)}, if 
Rm� > 0 and Es > 0
0, otherwise

Rm =
αm
ij (t) − ∑

s′:Es′>Es
gs′μs′

ij (t)

gs
, (35)

Es = lsQs
i(t) + lsZs

i (t) − Vlsb̂mi (t) − Vδvs
gs

As μs
ij(t) is determined by a cloud, which correspond-

ingly means that μs
ji(t) (j �= i) are determined by other

clouds, the left avaiable VM resources can be used to
schedule each cloud’s own jobs. The number of avaiable

VM resources left is Cm
i Nm

i − ∑
j �=i

t∑
τ=t−L

L∑
l=t−τ

α
m,l
ji (τ ) −

∑
s:ms=m

t−1∑
τ=t−ls

gsμs
ii(τ ). Similar to μs

ij(t), we schedule the

jobs in the descending order of factor lsQs
i(t) + lsZs

i (t) −
Vβi(t)
Cm
i

until its own resources are used up or the factor is
negative.

μs
ii(t)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if 
Rm�<0or Es<0 or
∑
j �=i

μs
ij(t) ≥ Ws

i (t)

max

⎧
⎨
⎩
Rm�,Ws

i (t) −
∑
j �=i

μs
ij(t)

⎫
⎬
⎭ , otherwise

Rm= 1
gs

⎡
⎣α̃m

s,i(t) −
∑
j �=i

L∑
l=1

α
ms,l
ji (t) −

∑
s′ :Es′>Es

gsμs′
ii(t)

⎤
⎦ ,

Es = lsQs
i(t) + lsZs

i (t) − Vβi(t)
Cm
i

(36)

Job dropping
The optimization in (24) is a maximum-weight problem
with weights lsgsQs

i(t)+ lsgsZs
i (t)−V · ξ si for job-dropping

decision variables Ds
i(t),∀s ∈ {1, ..., S}, in the objective

function. When lsgsQs
i(t) + lsgsZs

i (t) − V · ξ si > 0, the
potential cost of scheduling exceeds its drop penalty, and
type s jobs should be dropped in the maximum rate, i.e.,
Ds
i(t) = Ds(max)

i , in order to maximize the objective func-
tion value. Otherwise, there is no drop, i.e., Ds

i(t) = 0.
Therefore, the optimal number of type s jobs dropped by
cloud i in t is
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Ds
i(t) =

{
Ds(max)
i , if lsgsQs

i(t) + lsgsZs
i (t) − V · ξ si > 0

0, otherwise (37)

Performance evaluation
Experimental setup
We carry out our simulations based on Alibaba Clus-
ter Trace (v2018), which records jobs submitted to
the Alibaba Cluster, with information on their resource
demands and start and end times [27, 28].
The trace data is translated into tuples of arrival time,

resource types and quantities, and required execution
time. Fisrtly, we classify the required number of units of
CPU and RAM of each job into {1, 2, 4,..., 128} in the
field cpuMax and memMax respectively. According to the
CPU to RAM ratio, we then identify 10 major types of vir-
tual machines, ignoring types that required by less than
10 thousand jobs (there are about 1.3 billion jobs in the
cluster trace), and identify the number of required VMs
gs of each job, ranging from 1 to 9. For time duration,
we regard 60 timestamps as a timeslot and translate the
origin start and end time into the arrival timeslot and
required execution time. The shortest execution time ls is
one slot. Longer execution time implies larger maximum
tolerable response delay, corresponding to their service
level agreement ds. The volume of data vs is set accord-
ing to the units of the requirement of RAM of each job,
i.e., one unit of RAM stands for one unit of data volume.
After these translation and filtering, we get 1602 types
of jobs 〈ms, gs, ls, ds, vs〉. From Fig. 4, we can notice that
the number of jobs requiring 1 or 2 VMs is an order of
magnitude higher than those use more VMs, and it is
similar for jobs required one or two slot than those run-
ning for a longer time. Therefore, the jobs requesting one
or two virtual machines to use for short time is much
more than the ones request for several VMs for longer
time, resulting in the imbalance of different types of job
requests.
We design and implement a simulator of a federa-

tion using GO language. The clouds, machines, VMs and
jobs are coded as different configurations and parameters
stored in data structures. The simulator executes by read-
ing jobs in and conducts auction operations on behalf of
each cloud. Basically, we set up a federation following the
system simulated in [4].
There are 10 clouds in the federation. Each type of

VM has a number of servers in each cloud. The num-
ber of servers ranges within [800,1200]. Each server can
provide 16 or 32 VMs. The operational costs of each
server for one slot are set from 0.05 to 0.08 for different
clouds. Please note that, the unit of price, profit, cost in
the simulations can be viewed as any money unit. The
job charge to the customers is decided by multiplying its

requesting gs and ls by the unit price of VM, which is
set to be 0.1 by referring to [29]. The penalty for drop-
ping a job is set to 5 times its original charge to the
customers. In each timeslot, we randomly distribute the
arriving jobs to different clouds in the federation. In our
experiment, the federation receives about 90 thousands of
job requests in each timeslot on average. We simulated
totally 13000 timeslots and more than 1 billion jobs are
processed.
Since our model considers both execution time and the

number of required VMs, we also simulate three meth-
ods that considers only one factor or neither factors for
comparision. Their importance queues are as follows:

Qs
i(t + 1)′ = max

⎧
⎨
⎩Qs

i(t)
′ −

F∑
j=1

lsμs
ij(t) − lsDs

i(t), 0

⎫
⎬
⎭

+ lsrsi (t)

Qs
i(t + 1)′′ = max

⎧⎨
⎩Qs

i(t)
′′ −

F∑
j=1

gsμs
ij(t) − gsDs

i(t), 0

⎫⎬
⎭

+ gsrsi (t)

Qs
i(t + 1)′′′ = max

⎧⎨
⎩Qs

i(t)
′′′ −

F∑
j=1

μs
ij(t) − Ds

i(t), 0

⎫⎬
⎭

+ rsi (t)
∀s ∈ {1, ..., S}

(38)

And the virtual queues are also modified like them.
Qs
i(t + 1)′ and corresponding virtual queue only consid-

ers job execution time, i.e., with Time. Similarly,Qs
i(t+1)′′

and corresponding virtual queue only considers the num-
ber of required VMs, i.e., with VMNum. Qs

i(t + 1)′′′ and
corresponding virtual queue is regarded as the baseline,
proposed in [4].
We also conduct the experiments to show the effective-

ness of our double auction mechanism. In the existing
trading mechanism in [4], it selects one buyer winner
against multiple buyer winners in an auction. Additionally,
the participants can only schedule one type of service at
each time t, which has potential risk of inefficiency.

Result analysis
We measure the performance using three metrics. Indi-
vidual profit: the total profit of a cloud in the federation,
which includes the profit got from executing jobs for own
users and profit got from selling VMs. Drop rate: the num-
ber of jobs dropped over the number of jobs started to
execute. Average drop penalty: the total amount of penalty
divided by the total number of jobs executed.
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Fig. 8 Comparison of average drop penalty with different values of V

Figure 5 shows that our multi-factor algorithm can help
each cloud achieve highest individual profit among these
algorithms with different value V. Even if only one fac-
tor is consdiered, our algorithm can also out perform the
basline. Comparing the two factors, we can also observe
that, the number of VMs required plays a more important
role that execution time. From Fig. 6, we can observe that
the average individual profit grows as V becomes larger.
The SLA requirement is strict when V is small, so there is
no time to dispatch many jobs, leading to relatively high
drop rate, as shown in Fig. 7, and low profit. As V gets
larger, SLA requirement is loosened and the performance
can be improved, gradually approaching its limit.
In addition to profits, we also investigate the drop rate

and average job drop penalty of these algorithms. From
Fig. 7, we can notice that our algorithm drops the least
jobs with 4.2% drop rate when V is 5×104 while the base-
line algorithm still drops 7.7% job requests. Although the
gap is only several percents, the number of extra dropped
jobs may be very large and leads to massive loss in eco-
nomics. Additionally, our algorithm can achieve less than
2.6% drop rate when V grows to 5×105 while the baseline
algorithm only decreases to 6.4%. Such difference in drop
rate clearly show that, our algorithm can get more jobs
executed successfully, and consequently can help improve
system efficiency.
Figure 8 shows that, the average job drop penalty of

all the algorithms decreases with the increase of V. The
average job drop penalty of our algorithm ranges from

1.81 to 1.40 while that of the baseline ranges from 2.71 to
2.38. Therefore, our algorithm can not only drop less jobs
but also reduce the average drop penalty to maximize the
profit of a cloud. This indicates that, our algorithm can
better model the importance of jobs requesting for mul-
tiple virtual machines and multi-slot execution time than
the baseline algorithm.
From another perspective, unbalanced number of dif-

ferent types of jobs is mitigated by the number of their
required virtual machines and execution time. Therefore,
it better presents the value of jobs and give more oppor-
tunity to the minority types with higher drop penalty than
other algorithms.
Figure 9 is the comparision of individual profit among

different auctionmechanisms.Multi-service stands for the
auction mechanism only selects one buyer winner against
multiple seller winners, while it still let the participants
trade resources for multiple types of services and schedule
corresponding jobs. Multi-winner stands for the auction
mechanism selects pairs of winners, while the participants
can only trade resources for services using same quan-
tity of same type VMs, regardless of the service execution
time and schedule corresponding jobs. Figure 9 shows
that, using either Multi-service or Multi-winner auction
mechanism dramatically decreases the individual profits
of the clouds. Therefore, our auction mechanism is more
efficient than them by selecting pairs of winners and trad-
ing resources for multiple types of services at the same
time.
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Fig. 9 Comparison of individual profits with different values of V. (a) V = 0.5 × 105, (b) V = 2 × 105, (c) V = 3.5 × 105, (d) V = 5 × 105
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Summary. The experimental evaluation clearly show the
advantages of our design. Compared with the solution
in[4], our design can achieve higher individual profit for
all clouds simulated, lower drop rate, and reduce the aver-
age drop penalty. Such advantages come from not only
the scheduling algorithm but also the auction mechanism
proposed.

Conclusion and future work
In this paper, we investigate federation of individual self-
ish clouds serving jobs with heterogeneous durations.
We focus on maximizing their individual-profit by serv-
ing more job requests and selling more VM resources.
We first propose a double auction-based mechanism to
trade virtual machines for different durations. It effec-
tively select pairs of buyer and seller winners and deter-
mine the deal price as well as upper bound of traded
resources. The trading mechanism is proved to be truth-
ful, individual rational and ex-post budget balanced. To
maximize the time-averaged profit for individual clouds,
we then propose a dynamic resource bidding scheme to
reveal the true value of the resources. A job schedul-
ing strategy is also designed to make full use of avail-
able resources and the necessary servers are provisioned.
The experiments show that our algorithm can achieve
higher individual profits. Our algorithm better models
the importance of different types of jobs with hetero-
geneous execution durations and resource requirements,
which reduces both the average job drop rate and aver-
age drop penalty. In the future, we are going to generalize
the different types of VM resources into unified CPU and
RAM resources, as well as model the jobs in a more gen-
eral way to extend the scope of the application of the
strategies.
In future, more efforts should be made to extend and

improve our design. More resource types can be consid-
ered, e.g., CPU core, memory space, etc. With such fine
granularity, cloud resources can be auctioned and allo-
cated with higher flexibility and higher utility may be
achieved. Of course, the auction mechanisms need to be
extended to handle multiple types of resources, which
would be more complex. Another interesting direction
is to consider the dependency among jobs to be sched-
uled. Such dependency will obviously affect the auction
and scheduling mechanisms. More precisely, dependent
jobs need to be considered simultaneously, because avail-
ability of resources for a successor job can will directly
affect the performance of the whole set of depend-
able chain of jobs. Moreover, the scenario of co-location
deployment may be considered, where online services
and offline jobs are deployed at the same computing
nodes. In such an environment, the amount of resources
available for offline jobs is determined by the work-
load level of online services. That is, idle resources pre-

allocated for online services can be borrowed by offline
jobs. Then, the resource auction for jobs must consider
the dynamic variance of resource consumption of online
services.
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