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Abstract

While a multitude of cloud vendors exist today offering flexible application hosting services, the application
adaptation capabilities provided in terms of autoscaling are rather limited. In most cases, a static adaptation action
is used having a fixed scaling response. In the cases that a dynamic adaptation action is provided, this is based on
a single scaling variable. We propose Severity, a novel algorithmic approach aiding the adaptation of cloud
applications. Based on the input of the DevOps, our approach detects situations, calculates their Severity and
proposes adaptations which can lead to better application performance. Severity can be calculated for any number
of application QoS attributes and any type of such attributes, whether bounded or unbounded. Evaluation with
four distinct workload types and a variety of monitoring attributes shows that QoS for particular application
categories is improved. The feasibility of our approach is demonstrated with a prototype implementation of an
application adaptation manager, for which the source code is provided.
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Introduction

Cloud services are increasingly used with the total
amount spent on public cloud services, globally, pre-
dicted to surpass $300 billion in 2021 [1]. A diverse
range of applications can be deployed on machines in-
stalled in public, private and hybrid clouds, leveraging
available APIs of cloud providers and standards such as
TOSCA (Topology and orchestration specification for
cloud applications) [2]. For some cloud applications, the
initial deployment might be enough to ensure that the
application will operate correctly indefinitely, as the
workload is expected to be static and predictable. In
most cases however, the load is fluctuating and thus re-
quires support for elasticity from the part of the applica-
tion. Elastic applications should be able to respond to
the continuous need for adaptations, adding, removing
or modifying a number of VM (Virtual Machine)
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instances to appropriately handle incoming load. To-
wards this direction, major cloud providers offer support
for automated application scaling which is typically con-
trolled by a set of predefined rules.

Cloud application elasticity is an active research do-
main, especially if we consider the need to handle the
extended cloud computing, which includes fog and edge
devices. Algorithms exploiting a range of techniques,
from machine learning to control theory methods, have
been developed, aiming to provide timely application ad-
aptations at low cost. From the modelling perspective,
software architecture paradigms which emphasize on
scalability and adaptivity, culminating to the Functions
as a Service (FaaS) paradigm have gained considerable
attention over the last years. These recent developments,
coupled by the surge in popularity of cloud applications,
have created a pressing need to properly cope with
workload fluctuations and adequately handle heteroge-
neous cloud resource allocation that might even involve
edge devices.
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The mechanisms supporting cloud elasticity which are
available today, can be broadly divided in three categor-
ies: i) manual decision making; ii) automatic adaptations;
and iii) hybrid solutions. To the best of our knowledge,
most of the developed mechanisms either require some
input from the DevOps in the form of event-condition-
action rules — and do little more than applying them —
or rely on complex solutions inspired from the fields of
control-theory, queueing-theory and machine-learning
[3]. The knowledge acquired from machine-learning —
based algorithms is not easily transferable to other do-
mains (the transfer learning problem [4]) and they inher-
ently lack transparency in the way the decision-making
takes place, a fact that may hinder their adoption in pro-
duction systems at this stage. Mechanisms requiring
manual input are the most popular solution among the
available providers.

In this work we present ‘Severity’, a novel algorithmic
approach aiding the adaptation of cloud applications.
Based on the input of the DevOps, our approach detects
situations, calculates their Severity and proposes adapta-
tions which can lead to better application performance.
Our approach is complemented by a prototype software
system, which uses Severity to characterize the current
load and produce the necessary adaptation actions. Unlike
other similar approaches, the triggering of adaptation ac-
tions, as well as the adaptation actions themselves are pro-
vided in an easily understandable form and it is possible
to log precisely the cause and the effect of each adaptation
recommendation of the application. Our approach mainly
focuses on the usage of horizontal scaling.

In this paper, we aim to answer the following research
questions: i) How does our methodology compare to
other methodologies enabling application elasticity? ii)
What is the deviation of our approach from the optimal
solution? iii) How does Severity compare to commercial
approaches, in terms of satisfaction of QoS attributes?

The remainder of this work is organized around the
definition of ‘Severity’ and the techniques which are
based on it in 5 sections. Section 2 includes a view of
the current state of the art concerning the adaptation of
cloud applications. Section 3 includes the definition of
elasticity rules and introduces the concept of Severity.
Section 4 contains the definitions of adaptation tech-
niques which can be used to control the (horizontal)
scaling of an application. Section 5 demonstrates the cal-
culation of Severity and the resulting adaptation in an il-
lustrative scenario. Section 6 presents the feasibility of
using Severity in a real-world platform monitoring sys-
tem. In Section 7, a comparative evaluation of the adap-
tation techniques described in Section 4 is presented.
Section 8 outlines the findings of the paper, while also
proposing future research directions. Finally, Section 9
concludes this work.
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Cloud application elasticity

Decision-making approaches for cloud autoscaling sys-
tems are based in general either on rule-based control,
or Control Theory and Search-based optimization [5]. In
the following subsections we position our approach with
respect to other works from these fields. Our emphasis
is on applications with workloads consisting of parallel
tasks which can be finely partitioned between processing
instances, e.g., using a load balancer. This marks a differ-
ence from other works which consider an internal appli-
cation structure (e.g complex workflows as in [6]). We
assume that our simulated application uses a single
virtualization layer, and that no synchronization issues
as those investigated in [7] appear. Moreover, unlike
some works which consider resource contention be-
tween cloud components (e.g [8]), we consider that
ample cloud resources are available, and that no re-
source saturation occurs in the cloud.

Rule-based and control-theoretic adaptation approaches
The rule-based adaptation approach is one of the sim-
plest and more intuitive approaches which can be
followed to scale a cloud application. Rule-based adapta-
tions rely on the expertise of a DevOps to define the var-
iables which should be monitored, and the thresholds
which should be respected (a priori knowledge). The
rules should be carefully tuned in order to include all
variables which can influence the deployment. While
some adaptation systems only use some adaptation attri-
butes for input (as indicated in [5]) such as CPU or the
response time, the system which is proposed in this
work can work with any number and type of measurable
attributes.

Control theoretic approaches (e.g [9-11]) are based on
traditional control theory but are occasionally enhanced
with extensions. They are characterized by their dynami-
city and low latency. However, the configuration of the
control loop should be performed by an expert in order
to prevent waiting for the system to stabilize after mul-
tiple iterations. Rule-based approaches hold an advan-
tage over pure control-theoretic approaches on
simplicity and clarity, and thus domain experts can more
easily transfer their knowledge to the systems.

Gandhi et al. [3] describe a technique based on Kal-
man filtering, which estimates the parameters of a
queuing model representing the application. The esti-
mated values are used to create scaling directives, pro-
viding auto-scaling capabilities to the platform. When an
abrupt change in its time-series representation is de-
tected, a scaling event is transmitted. The authors evalu-
ated the performance of their algorithm and found it
superior to threshold-based rules working with static
percentages, adding or removing one VM instance when
the threshold (upper or lower respectively) has been
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violated. Using our approach, scaling actions can be
more varying and detailed in their response, than simply
adding or removing a single VM instance. Besides re-
sponse time, we can use any number of attributes to feed
our techniques. Lorido-Botran et al. [12] comment on
queueing theory models used to horizontally scale an ap-
plication, that they suffer from being tightly bound to
the workload and the processing infrastructure for which
they have been created. As a result, they need to be
recalculated when either change.

Arkian et al. [13] propose Gesscale, a control-theory
inspired autoscaling approach, based on the measure-
ment of the maximum sustainable throughput. The esti-
mation of the results of a scaling action in Gesscale is
based on the existence of a performance model. When
the performance is better than expected, multiple pro-
cessing instances can be removed, while when it is
worse, a single processing instance is added. They use a
single composite metric (maximum sustainable through-
put - MST) to guide their autoscaling model. MST is
calculated based on the maximum network delay be-
tween nodes, the throughput of a single node, and the
parallelization inefficiency. Using their methodology,
they demonstrate superior performance compared to al-
gorithms which are latency-unaware, and/or use only
the cpu consumption as an indication of the intensity of
the workload. In practice this approach still uses one
strictly defined (albeit composite) metric to guide scal-
ing. Instead, our approach combines any number of arbi-
trary metrics to obtain better results rather than using
individual metric values to scale. Moreover, the scaling
algorithms we define allow more than one instances to
be added as necessary which reduces the number of
reconfigurations.

In [14] the approaches of Amazon and Google con-
cerning scaling are described, Target Tracking and Step
Scaling, and Multiple Zones and Horizontal-Pod Auto-
scaling (Kubernetes) respectively. These tools can be di-
vided into two algorithmic categories, the first
containing Multiple Zones and Step scaling, and the sec-
ond containing the Kubernetes Horizontal-Pod Auto-
scaling and Target Tracking. In the first category of
tools (which is also encountered in other major pro-
viders, such as Microsoft Azure [15] and Oracle Cloud
Infrastructure [16]), the DevOps should either enter a
number of rules that scale out/in the application by a
predefined number of instances (or a percentage of the
active instances). Unfortunately, while this approach is
simple, it requires considerable input from the DevOps.
Tools belonging in the second category are more sophis-
ticated, requiring the creation of a control-loop that will
perform scaling automatically to attain a specific thresh-
old value. While Amazon Target Tracking supports only
one metric in the Control Loop, the Kubernetes
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horizontal pod auto-scaler (HPA) can support multiple
metrics.

In the same work [14], a custom approach to scaling
using the ‘dynamic-multi level’ (DM) method is outlined,
combining predictive elements with a control loop to
direct the scaling of the platform. Using a variety of
workloads and benchmarking metrics, an evaluation
against a real system was carried out, and their approach
was found to be better than approaches which are used
by leading cloud vendors in many scenarios. However,
only one threshold value was used for all algorithms,
and a default VM instantiation delay of 30s was as-
sumed. The adaptation techniques proposed in our work
were evaluated using four VM spawn delay intervals, as
well as six combinations of thresholds to detect variation
in their performance. Additionally, the workload pat-
terns which are used in our evaluation are more radically
changing compared to those provided in [14] (in terms
of the rate of change of the absolute values of the work-
load), stress-testing the performance of all techniques.

In [17], an extension to the Kubernetes HPA algorithm
is discussed, evaluating the use of a constant absorbing
small fluctuations of the workload. We claim that in
cases where scaling is performed using multiple metrics,
one or more of the performance criteria of the applica-
tion can be improved, when all of the available values of
the monitoring metrics are used (rather than only the
maximum value or only one metric value as is the case
in Kubernetes HPA and Amazon TTS, respectively).
Additionally, we provide an approach which requires less
input from the DevOps and allows hybrid algorithms —
for example a control loop activated by rule thresholds
as illustrated in section 4.5.

Another interesting approach is followed by Lorido-
Botran et al. [18], who thoroughly describe the idea of
modifying the thresholds which are employed in rule-
based systems to obtain a better response. They support
that when no service-level objective violations are de-
tected within a time frame, the scale-in and scale-out
rule thresholds should converge to higher and lower
values respectively to improve the responsiveness of the
system when high workload is encountered. The evalu-
ation of their algorithm is performed using a single,
highly variable workload trace, and two benchmarking
criteria (service-level objective violation and cost). Ap-
proaches similar to those introduced in [14, 17, 18] are
complementary to our approach and can be used to pro-
vide an enhanced yet more complex system.

Vaquero et al. [19], Galante et al. [20] and Copil et al.
[21, 22] have proposed rule-based frameworks, which ei-
ther rely on user input to calibrate the adaptation ac-
tions by manually setting the scaling action as in [19, 20]
or always using the same adaptation event (e.g add one
VM instance) to keep the desired monitoring attributes
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to acceptable levels as in [22]. Using these frameworks,
the user should manually detail all the situations for
which adaptation will be required. However, this process
is error-prone and nevertheless requires the constant at-
tention of the DevOps. In the case of Ferretti et al. [23],
the ability to implement scaling decisions adding or re-
moving more than one instances is supported, however
no information is provided on whether the number of
instances (de) allocated can change at runtime without
the intervention of the DevOps. Our approach aims to
waive the requirement from a user to frequently change
the response of the system, as the user needs only to
specify basic thresholds with a generic action once.
Then, we can measure the violation of these thresholds
and automatically derive an adaptation action.

In [24], Trihinas et al. enhance the basic adaptation
support offered by the previous rule-based systems, by
offering AdaFrame, a library to support resource-based
elasticity controllers. AdaFrame improves the results of
rule-based systems by adapting a cooling-down period
between successive adaptations, through the analysis of
the statistical properties of a monitoring metric stream,
e.g., CPU utilization. Thus, scaling out and scaling in ac-
tions are less likely to occur on sudden bursts, and occur
faster in the case of increased ‘regular’ workload. This
approach is complementary to ours, as it improves the
triggering of the autoscaling loop.

Dutreilh et al. [25] have explored both threshold-based
rules and Q-learning, concluding that Q-learning is su-
perior, given enough training. Two of the techniques
which are examined in Sections 4.6 and 4.7 are simplifi-
cations of Q-learning, with the absence of feedback. Un-
like Q-learning though, our approach, benefits from
being usable without extensive training or requiring the
definition of a complex reward function. Besides, we de-
scribe a mechanism to ascertain the Severity of a situ-
ation, similar to the reward function employed in Q-
learning, which can be used as input for a multitude of
algorithms, one of which can also be Q-learning.

Ali-Eldin et al. discuss in works [26, 27] elasticity con-
trollers based on a generic model of queueing theory,
the G/G/N queue. In work [27] they consider workloads
which can be queued and then be appropriately serviced
by tuning the number of VMs according to the requests
which should be serviced. Their approach allows a ser-
vice to remain operational even under heavy load, by
limiting the queued requests. The availability of a buffer
to queue requests is not present in their previous work
[26]. The principle behind the scaling of the application
in their approach is similar to the algorithms which we
propose. Moreover, our approach can be used in con-
junction with their proposal, since through Severity we
shall provide a means to scalarize a set of metric values
to be able to use a single-metric based controller such as
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the one which is proposed in their work. We concen-
trate on the ability to extract more information from
rules involving multiple metrics, however this does not
preclude the use of the advanced techniques presented
in these works (e.g different combinations of reactive
and/or proactive scaling-up and scaling-down).

In [28] the authors propose Chameleon, a hybrid, pro-
active autoscaling mechanism, evaluating its perform-
ance using realistic workloads and works suggested in
the state of the art. CPU utilization and request rate are
mainly used to estimate the workload of an application
and guide autoscaling. Chameleon combines forecasting
methods and realtime monitoring to enable proactive
and reactive scaling decisions. It uses thresholds for both
reactive and proactive scaling decisions, however the ser-
vice demand estimation component also uses Kalman
filter, regression and optimization estimators (among
others) to estimate the time required for a request.
Chameleon is extensively evaluated against other ap-
proaches suggested in the autoscaling literature and
found to outperform them by a large margin. Our ap-
proach enables the use of more metrics if necessary, in-
cluding custom metrics. As such, we argue that it can
enrich approaches such as Chameleon to consider add-
itional context factors (metrics) for their autoscaling
algorithms.

Search-based optimization adaptation approaches
Search-based optimization approaches comprise another
main category of decision-making approaches used by
Self-aware and Self-adaptive Cloud Application Systems
(SSCAS) [5]. Using the classification of Chen et al. [5],
search-based techniques include dynamic programming,
genetic algorithms, reinforcement learning and integer
linear programming among others. By definition, all of
these techniques are based on traversing the search
space of solutions using a specific algorithm, attempting
to optimize one or more criteria. However, the exponen-
tial number of solutions which should be explored when
considering a number of attributes and actions which
can be optimized results in training or execution times
which are unacceptable. Also, while these techniques re-
quire less work from the side of the domain expert — as
a lot of information is learnt at runtime — they need
more time to converge. Additionally, when finished, the
actions learnt are highly specific to the problem solved —
meaning that unless they can be translated to a set of
rules/statements, no knowledge can be transferred in a
case of a new but different instance of the problem.

The work of Ramirez et al. [29] describes an autoscal-
ing mechanism which considers two virtualization layers
(VMs and containers) to deliver the required quality of
service. Quality of service is calculated based on the
number of requests which can be serviced. Five different
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techniques to determine the number of VMs and con-
tainers for a workload are evaluated, three of which
traverse the configuration space (number and type of
containers in VMs) to find an appropriate solution (the
others use heuristics). They demonstrate that appropri-
ately handling scaling using two virtualization layers re-
sults in reduced cost. The techniques we describe can be
used in parallel with such approaches although we focus
on applications which exploit a single virtualization layer
(or use the assumption of one container instance in one
virtual/physical machine). Moreover, we allow multiple
metrics to influence the decision of scaling.

In [30] the authors compare two functionality modes
of the Kubernetes Cluster Autoscaler. The Kubernetes
Cluster Autoscaler is a component responsible to allo-
cate new processing nodes to host Kubernetes pods
when this is necessary. The first functionality involves
using nodes from a single node pool (identical nodes -
CA) while in the second multiple node pools are used
(allowing differently-sized nodes to be spawned — CA-
NAP). They conclude using standard autoscaling metrics
that CA-NAP is overall superior to the CA, although no
significant cost benefits are observed. In the evaluation
of this work, we do not consider using nodes with differ-
ent processing capacity. However, our techniques can be
generalized to use processing nodes offering a fraction
of the performance of a normative processing node.

GKE Autopilot [31] offers an advanced autoscaling ap-
proach, capable of vertical and horizontal autoscaling.
The main emphasis of this work is on vertical scaling,
setting the appropriate resource limits for each process-
ing node. Autopilot can set these limits, even if no user
input is provided. Autopilot manages to greatly reduce
slack (unused resources) using either statistical or ma-
chine learning techniques. However, the configuration of
statistical recommendations is tuned for long running
services, which might not be optimal. Besides, its ma-
chine learning recommender has the advantage that it
can output easily explainable recommendations on the
resource limits of a processing node. The part related to
horizontal scaling resembles the algorithm which is used
by the Kubernetes Horizontal Pod Autoscaler.

AWS [32] offers another autoscaling approach which
is based on predicted data about the application. It tries
to attain a target utilization level, based on monitoring
metrics (it does not however currently support custom
metrics). It uses machine learning models trained in
Amazon, based on billions of data points. To the best of
our knowledge these machine learning models are not
publicly available. Notwithstanding, it is difficult to train
ML models of a comparable size without access to the
data, algorithms and processing infrastructure used by
Amazon. Our approach does not need any training, the
adaptations created by it can be readily traced to the
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original monitoring observations and can be used in
addition to the presence of a forecasting mechanism.
Our techniques extract added value from domain expert
knowledge while retaining the simplicity of threshold
rules. We introduce a thoroughly documented, open and
modular approach which - thanks to the scalarization re-
alized through Severity - can use ideas present in any
existing horizontal scaling adaptation technique using
metrics (as Severity itself can be considered a metric).

Cloud application elasticity with elasticity rules
Elasticity rules
We define elasticity rules as directives which indicate
firstly the QoS limits of normal operation of an applica-
tion, and secondly the horizontal elasticity action which
should be taken to accommodate the needs of the appli-
cation when these limits are trespassed, scaling in or
scaling out. The QoS limits can be specified in terms of
any measurable metric, including custom metrics. Rules
are assumed to be entered by a DevOps who possesses
significant experience and knowledge on the application
which is deployed and monitored. Contrary to static
rules which specify one concrete set of conditions, and
one concrete set of actions, the proposed elasticity rules
require less input for their definition. The DevOps
should specify the QoS conditions which trigger the rule,
but in the action part of the rule, only the scaling direc-
tion is required and not the number of instances which
should be added/removed. This allows a flexible re-
sponse action, which may be decided using a variety of
techniques as demonstrated in section 4. With elasticity
rules, the triggering conditions of a rule and the adapta-
tion - the concrete actions - are separated conceptually;
our approach assumes that a DevOps is primarily inter-
ested in defining the criteria indicating that the applica-
tion functions correctly, rather than the exact adaptation
action which will be followed.

The format of an elasticity rule can be found in Listing
1.

Listing 1 Elasticity rule format:

For component_id = component_id

if (attribute 1) < attribute_1 value and (attribute_2)
< attribute 2 value and ... and(attribute_n) < attribute_n value

within Timewindow = Timewindow and Cooldownperiod has passed
from previous adaptationthen Scale_out/Scale_in

Any number of QoS attributes connected with the
“AND” logical operator can be entered. While we do not
allow “OR” logical operators to be used alongside
“AND” logical operators, multiple elasticity rules can be
enforced in parallel. Additionally, non-bounded attri-
butes, e.g., response time, are supported, provided that a
threshold is set by the DevOps. Furthermore, the
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DevOps defines the time-window over which this rule is
calculated (e.g., 10 min), and the cooldown period which
should elapse between two triggerings of the rule.

An instantiated example of an elasticity rule appears in
Listing 2.

Listing 2 Elasticity Rule example

For component_id = VideoTranscoder
if AverageCPU 51, >70%and AverageRAM . ser>70%
within Timewindow=10 minutes
and 30 minutes have passed from previous adaptations then Scale_out

When the thresholds set by the DevOps for the moni-
toring attributes expressed in an elasticity rule are vio-
lated, a violating situation is detected, and an elasticity
rule is triggered. Onwards, we will refer to a violating
situation simply as a ‘situation’.

Situation severity
Once the thresholds of an elasticity rule are violated, an
associated situation is detected. To assist the decision on
the most appropriate number of instances which should
be added to or be removed from the application, we as-
sess the ‘Severity’ of the situation, which quantifies the
rough magnitude of the violation of the thresholds of
the attributes used in the elasticity rule. The values of all
violating attributes are used, and weights are assigned to
each of them to indicate their relative importance.
Higher values of Severity indicate that more pronounced
changes to the application should be made (i.e., more
VMs should be added/removed).

The Severity of any detected situation Vyigiating = (V1,V2,
...,Vy) is determined as shown in Eq. 1.

Equation 1 Calculation of the Severity of a situation

Severity(V‘,mlmmg) = \/ Z wi(Normalizeaf(yi))2 (1)

i=1

where v; are the individual, threshold violating QoS at-
tribute values comprising the particular situation, w; are
their respective weights and n is the number of attri-
butes included in the triggered elasticity rule. For each
of the v; svalues it is assumed that v; € [0, 1].

While the definition of Severity allows for the usage of
different weights for each of the attributes being evalu-
ated, in the remainder of our work we assume for sim-
plicity that all weights are equal to 1. Following the
definition of Severity (Eq. 1), the maximum Severity
value for a situation is observed when all attributes have
reached their maximum normalized values, i.e., 1 and is
equal to \/n.

Having chosen the weight values for each attribute,
the calculation of Severity relies on obtaining the nor-
malized values for each of the attributes. For each attri-
bute v; - threshold t; pair in the rule, the normalization
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formula in Eq. 2 is used in cases of attributes that need
to be greater than their threshold and Eq. 3 is used in
case of attributes that need to be less than their
threshold.

Equation 2 Variable normalization in the greater-than
case

abs(vi—t;)
abs(maximum attribute;) ;)

(2)

Normalized(v;) =
Equation 3 Variable normalization in the less-than
case

abs(vi-t;)
abs(t;-minimum/attribute;))

Normalized(v;) = (3)

Equations 2 and 3 are applicable in the case of attri-
butes which are bounded. In the case of unbounded at-
tributes — for example response time, the denominator
of Eq. 2 and Eq. 3 is unknown, and therefore the nor-
malized value is not computable. In such cases, we can
estimate the unknown or unavailable bounds of the at-
tribute using past observations. We assume that each at-
tribute follows an arbitrary distribution and that the
attribute — random variable is integrable, has a finite ex-
pected value g, a finite non-zero variance ¢* and a stand-
ard deviation . For the estimation of the bounds we use
Chebyshev’s equation [33].

We consider that determining that 96% of the samples
of the attribute are within an upper and a lower bound,
provides us with an adequate estimation of the max-
imum and the minimum value respectively. In this case,
only 4% of the samples will be outside these boundaries.
Substituting this probability value in the left handside of
the equation, and solving for t we determine that t = 50.
As a result, we can conclude that the contrapositive ar-
gument, i.e. that all samples of a distribution will be
contained inside the boundaries with a probability of
96%, is true as long as the samples are within 5 standard
deviations of its mean value.

To illustrate, using the example of response time —
which does not have an upper bound — let us assume
that current observations for this attribute indicate an
expected value p =200 msec, with a standard deviation
of 30 msec. Then, the probability of measuring a re-
sponse time X, being retarded more than 5 -30msec =
150 msec from the expected value (200 msec) is less than
4%. We can then estimate the upper bound of the distri-
bution to be 200 + 150 = 350 msec with 96% probability.

The expected value and the standard deviation of the
distribution is calculated as the arithmetic mean over a
window of the last z samples of the distribution — a
number which can be configurable. The greater the
value of z, the more the arithmetic mean will approach
the expected value of the distribution (provided that the
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distribution is unchanged). The smaller the value of z,
the more flexible the bounds are to changes in the distri-
bution of unbounded variables. ‘Upper’ and ‘lower’
bounds are updated dynamically using a sliding event
window.

Severity zone calculation

Although Severity provides an assessment of the inten-
sity of a situation, in some cases it is meaningful to
group situations by their Severity. Considering that a de-
tected situation with p attributes is represented as a
point in p-dimensional space by Vijglating, Situations hav-
ing similar Severity values form circular annuli, spherical
shells or hyper-spherical shells (depending on whether
p=2, p=3, or p2z4 respectively). These regions are
called ‘Severity zones” and are used by the Simple sever-
ity zones and Relative severity zones techniques pre-
sented below.

The rationale behind both of these techniques is that
similar Situations in terms of Severity should result in
same adaptation actions. To obtain ‘Severity zones’, we
divide the real number interval [0, \/n| reflecting all pos-
sible Severity values for a given set of metrics into m
equal sub-intervals. Each such sub-interval is a Severity
zone (Table 1).

Zones containing situations with Severity values with
numbers closer to 0 will result in milder adaptation ac-
tions, while Severity zones closer to /# (the maximum
value of Severity) will result in more instances being
added to/removed from the application. Choosing higher
values for m indicates that finer-grained adaptation ac-
tions are required. On the other hand, choosing lower
values for m increases the amount of historical data
available for each adaptation action.

We make adaptation decisions under the assumption
that the Severity value calculated from a random situ-
ation can belong to each zone with equal probability —
in order not to bias the triggering of a particular adapta-
tion decision — and thus obtain results which are rele-
vant to the situations included in the particular Severity
zone. To satisfy this requirement, we need to define all
Severity zones to have equal area (or volume, or

Table 1 Severity zones bounds

Severity Sub-interval lower Sub-interval upper
Zone bound bound
1 0 v
m

2 vn 2vh

m m
3 2y 3vn

m m
m (m=1)vn NG

(2021) 10:45 Page 7 of 26

hypervolume, in the case of 3 and more attributes-
dimensions). Furthermore, we require that equal Severity
values should trigger the same adaptation actions. In the
case of two attributes, finding an analytical expression to
determine the splitting of a square area zone to three
equal zones, also satisfying the requirement for equal Se-
verity values (as seen in Fig. 1), is a difficult but never-
theless achievable task. However, as the number of
dimensions increases to three or more, the problem be-
comes greatly exaggerated. This means that a solution
based on an alternative mathematical principle should
be found.

Such a solution is possible, if we consider the use of a
random simulation. For this purpose, we simulate the
normalized monitoring attribute values for situations
having k normalized attributes, by retrieving random
points s; from the Cartesian product of possible normal-
ized values of each of the k attributes. Since
normalization converts the values of attributes to per-
centages, we require that s; € [0,1]x[0,1] x ... x[0,1]. Each
point s; reflects the values of the monitoring attributes
of a possible detected situation. The choice of each s; is
uniformly random, so we can assume that the number
of points which should belong to each of the Severity
zones will be equal, if their volume (i.e., event space) is
equal. Thus, a number of p random points is chosen and
sorted. Then, supposing that there exist 7 zones (areas)
which should be determined, we determine the ratio z =
Lp/m |, where z is the number of points per area. Finally,
we calculate the maximum Severity values for the first
m-1 zones (the last Severity zone always has the value of
\/n as already stated above) by calculating the Severity
value of the (i-z) th element, where 1 <i<m —1. When
these values are known, the Severity zone of a detected
situation can be determined by comparing the Severity
value calculated to the Severity values of each Severity
zone.

The complex calculations outlined above, are based on
a simple Markov Chain Monte Carlo simulation which
is a well-established technique in the field of engineer-
ing. Although the calculation of complex integrals which
is needed in this — and in more complex cases — is diffi-
cult to perform in an analytic fashion, the Markov Chain
Monte Carlo simulation provides a satisfactory approxi-
mation which can readily be used.

Cloud adaptation techniques

In this Section we present different techniques based on
Severity which guide application adaptation. Further and
in order to highlight the novelty of our approach, we
present adaptation techniques based on the commercial
offerings of major cloud vendors. The latter are used as
a baseline in Section 6 to help us evaluate the usefulness



Tsagkaropoulos et al. Journal of Cloud Computing: Advances, Systems and Applications

(2021) 10:45 Page 8 of 26

Average =

RAM

Fig. 1 The situation space of the example Elasticity rule of Listing 2, split into 3 equal Severity Zones
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of Severity. Sections 4.1 and 4.2 describe two techniques
which are based on commercial offerings discussed in the
state-of-the-art analysis (Section 2). In Sections 4.3
through 4.9 we define seven different techniques which
can govern the scaling of an application, based on Severity.
Each of these techniques serves a different design goal.
The efficiency of each design is evaluated in Section 7.
While designing any technique using the Severity
value, we should be prepared to balance the detail of the
response between small load fluctuations and the need
to handle sudden workload peaks or troughs, which the-
oretically can be several times bigger/smaller than the
current workload. Here, we discern between seven basic
flavours which are based on it: Absolute severity value,
Normalized absolute severity value, Normalized absolute
severity control loop, Simple severity zones, Relative se-
verity zones, Severity value and Normalized severity
value. In the equations presented below, we assume that
the absolute Severity value is as, Severity value of a situ-
ation is s, the Severity zone of the situation is sz, the Se-
verity value of the threshold is £s and that the maximum
Severity value possible is ms. The current number of in-
stances of an application is assumed to be ci and the

new number of instances after the adaptation is assumed
to be ni.

With the exception of the Maximum attribute control
loop technique, the adaptation instances which are de-
termined by each technique in an adaptation action, are
rounded to the nearest integer. The Maximum attribute
control loop technique uses as an exception the ceiling
value of the calculated number of adaptation instances.

Table 2 summarizes the design traits of the methods
to be discussed in the next subsections. Each method is
characterized by its origin (whether it attempts to simu-
late related commercial offerings) and its dynamic be-
haviour. If a method uses more than metric value
present in an SLO rule, to establish the suggested new
number of instances, a positive indication appears in the
third column. Similarly, if it can spawn or deallocate a
non-predefined number of instances, a positive indica-
tion appears in the third column. Finally, the fourth col-
umn provides a measure of the relative number of
instances we expect the method to change in a scaling
event. Methods exhibiting similar characteristics use in-
put data (the threshold, the metric values) in a different
manner, so we propose them as possible alternatives
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Table 2 Characteristics of adaptation techniques
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Technique Inspired from Uses individual values from Dynamic resource Aggressive (de) allocation of
commercial offerings multiple metrics (de)allocation instances

Simple threshold v X X Very Low

Maximum attribute control ¢ Partly v Medium - also depends on

loop the thresholds set

Absolute severity value X v v Very High

Normalized absolute X v v Medium

severity

Normalized absolute X v v Low - also depends on the

severity control loop thresholds set

Simple severity zones X v X Custom (In tests, was
configured as Low)

Relative severity zones X v v Custom (In tests, was
configured as Low)

Severity value X v v High

Normalized severity value X v v Low

which can be more effective under different Equation 4 New instances determined for a scale out

circumstances.

Techniques which feature higher dynamicity than
others can potentially respond quite well to sudden
workload changes; however, they might also respond too
aggressively when a small workload change occurs, and
thus be unstable. Still, techniques which have lower
dynamicity, might not be efficient in handling workload
spikes, but can be more stable when small adaptations
are needed.

Simple threshold

The Simple threshold technique is inspired by the offer-
ings of major cloud providers, and the THRES technique
described in [14]. It adds or removes one instance for as
long as the thresholds of a rule are violated. The new
number of instances after an adaptation is ni=ci+ 1 (the
plus sign is for a scale out rule and the minus sign for a
scale-in rule). The aim of this technique is to allow fine-
grained adaptations, however it cannot efficiently handle
sudden workload changes.

Maximum attribute control loop

The Maximum attribute control loop technique is in-
spired by the offering of the Kubernetes HPA. The tech-
nique adds or removes processing instances, trying to
keep a number of monitoring attributes close to their
thresholds and choosing the greatest adaptation, i.e., the
maximum number of instances which should be added/
removed. Its dynamicity renders it is suitable for both
small and greater workload changes. The attribute which
triggers the greatest adaptation is referred to as the
‘maximum_attribute’ and its threshold as ‘maximum_at-
tribute_threshold’. The new number of instances after a
scale-out or a scale-in adaptation appears in Eq. 4.

rule using the Maximum attribute control technique

. . maximum attribute
ni = ci- . - (4)
maximum attribute threshold

Absolute severity value

The Absolute severity value technique uses the absolute
Severity value from a situation, which is calculated by as-
suming that t; = 0 in Eq. 2 and Eq. 3. In techniques using
the absolute Severity value, the values of the thresholds
of each metric are only used to trigger the rule, but do
not affect the new number of instances. The new num-
ber of instances after an adaptation using this technique
is ni = ci(1 * as)

As the maximum possible value of Severity increases
linearly with the number of attributes which are involved
in a situation, this technique is oriented to handle sud-
den spikes which are caused by a precise combination of
multiple metrics. However, in the case of smaller work-
load fluctuations it can introduce unnecessarily large
reconfigurations. As mentioned above, as reflects the ab-
solute Severity value.

Normalized absolute severity

The Normalized absolute severity value technique tries
to stabilize the instances of the application using the
normalized absolute Severity value — which is obtained
by dividing the absolute Severity value with the max-
imum possible Severity value. This technique allows a
reaction which is proportional to the actual metric
values (and does not use the threshold values except for
its triggering). The new number of instances after an
adaptation using this technique is shown in Eq. 5.



Tsagkaropoulos et al. Journal of Cloud Computing: Advances, Systems and Applications

Equation 5 New instances determined for a scale out
(plus sign) and a scale in (minus sign) rule using the
Normalized absolute severity technique

ni = ci (1 + %) (5)

As an example, if the absolute Severity of a scale in
rule was calculated to be 1.2, the maximum Severity for
this rule is 2 and the current number of instances is 10,
from Eq. 5 the new number of instances will be 4, mean-
ing that 6 of the instances will be deactivated.

Normalized absolute severity control loop
The Normalized absolute severity control loop technique
tries to stabilize the normalized absolute Severity value
around the Severity value of the threshold. To avoid
continuous adaptations, an upper threshold and a lower
threshold are used, separated by a customizable margin
inside which no adaptation is triggered. This technique
can be seen as a generalization of the Maximum Attri-
bute Control Loop technique of Section 4.2 to use Sever-
ity (also not using only the maximum value). Depending
on the thresholds set the technique can be very conser-
vative (and stable) or quite liberal in its recommenda-
tions. The new number of instances after an adaptation
using this technique is shown in Eq. 6:

Equation 6 New instances determined for a scale out
(plus sign) or a scale in (minus sign) rule using the Nor-
malized absolute severity control loop technique

ni = ci £ ci- (@—1) (6)
ts

where the ts value corresponds to either the upper or
the lower threshold for a scale out and a scale in rule,
respectively.

As an example, if the absolute Severity of a scale in
rule was calculated to be 0.9, the lower threshold Sever-
ity for this rule is 0.6 and the current number of in-
stances is 10, from Eq. 6 the new number of instances
will be 5, meaning that 5 instances will be deactivated.

Simple severity zones

The Simple severity zones technique uses the concept of
Severity zones to find the number of instances which
should be added to the infrastructure which is currently
used. The flavour of the technique which was tested in
our experiments used 3 Severity zones, which resulted in
1, 2 or 3 instances being added or removed from the
current infrastructure as appropriate. This technique can
be viewed as a somewhat more aggressive generalization
of the Simple threshold technique of Section 4.1, using
Severity. As the number of instances it can spawn or
deallocate are constant, this method is ideal for situa-
tions in which the application platform is stable and the
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workload is only gradually modified. The new number of
instances after an adaptation using this technique is
shown in Eq. 7:

Equation 7 New instances determined for a scale out
(plus sign) or a scale in (minus sign) rule using the Sim-
ple severity zones technique

ni=ci+sz (7)

As an example, if the processing infrastructure currently
has 4 instances and the Severity zone of a situation trig-
gered by a scale out rule was found to be 2, from Eq. 7 the
new number of instances will be 4 + 2 = 6.

Relative severity zones
The Relative severity zones technique uses the concept
of Severity zones to add (or remove) a percentage of the
current number of instances to the processing infra-
structure. Hence it is more dynamic (in general) than
the Simple severity zones technique described in Section
4.6. Higher values of the k constant indicate more pro-
nounced adaptations. It is recommended that k-
max(sz) < 1, otherwise in extreme scale-in adaptations all
available instances will be deactivated (if no other spe-
cific handling of this issue occurs). The flavour of the
technique which was tested used 3 Severity zones, and
k=0.1. The updated number of instances based on this
technique is shown in Eq. 8:

Equation 8 New instances determined for a scale out
(plus sign) or a scale in (minus sign) rule using the Rela-
tive severity zones technique

ni=ci(ltk-sz) (8)

To illustrate, let us consider that a scale out rule has
been triggered and the resulting situation is in the sec-
ond Severity zone while k =0.25. Then, if the current
number of instances is 4, two instances will be removed
bringing the total number of instances to 2.

Severity value
The Severity value technique uses the value of the Sever-
ity which is calculated using the value of each metric
threshold as t; in Eq. 2 and Eq. 3. It is suitable both for
small and large workload changes. In the case though
that the thresholds are not tuned to the workload, it can
be unstable and introduce a large number of reconfi-
gurations. The updated number of instances based on
this technique is shown in Eq. 9:

Equation 9 New instances determined for a scale out (plus
sign) or scale in rule using the Severity value technique

ni=ci(l=xs) 9)

For example, if a scale in rule has been triggered and
its Severity is 0.5 while the current number of instances
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is 4, two instances will be removed bringing the total
number of instances to 2.

Normalized severity value
The Normalized severity value technique uses the value
of Severity calculated as in the case of the Severity value
technique, divided by the maximum Severity possible to
obtain a normalized (and smaller overall) result. This
technique can be used to obtain more conservative
adaptation results when the thresholds are not known to
be tuned to the workloads, and also on workloads of
smaller variability. The new number of instances after
the application of this technique appears in Eq. 10, for
scale out and scale in rules respectively.

Equation 10 New instances determined for a scale out
(plus sign) or scale in (minus sign) rule using the Sever-
ity value technique

i =ci (1 ii)
ms

To illustrate, if the Severity value of a scale out rule
was found to be 1.0, the maximum Severity value is 2.0
and the current number of instances is 10, the new
number of instances will be 15, meaning that 5 new in-
stances will be added.

(10)

lllustrative scenario implementation

In this section, we will provide a walkthrough of the
situation detection process, from the monitoring data
published by instances comprising the cloud application
to the adaptation which is decided. We will focus on the
calculation of the Severity value, and how this can be
translated to an adaptation using the Simple severity
zones technique.

Let us assume that the elasticity rule illustrated in List-
ing 2 (repeated here for convenience) is used to process
incoming events:

Listing 3 Elasticity Rule example

For fragid = VideoTranscoder

if AverageCPU .50y >70% and AverageRAM ysier>70%

within Timewindow=10 minutes

and 30 minutes have passed from previous adaptations then Scale_out

The above rule states that if the average CPU and
memory usage on all devices hosting the component
‘VideoTranscoder’, surpasses 70% in a time window of
10 min, a new scale out adaptation action decision
should be issued — provided that no previous adaptation
event has occurred in the last 30 min (cooldown period).

Situation detection

We consider that at a certain time point, a new observa-
tion is detected, indicating that over the last 10 min, the
average values for CPU and RAM were 92% and 71%
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respectively. Moreover, no adaptation event has oc-
curred in the last 30 min. As the average CPU and RAM
values are trespassing both thresholds which have been
set to 70%, the rule will be triggered, and a situation will
be detected. To calculate the Severity of the situation,
the detected values should be normalized:

bs(92-70 22
Normalized(CPU,) = %0_70)) =30~ 73.3%

bs(71-70 1
Normalized(RAM,) = abs(71=70) =

—~33
abs(100-70) 30 %

In some of the techniques which were presented in
Section 4, the absolute Severity value is used. Had we
considered such a technique, the detected attribute
values would not be normalized, and the original metric
values would be used instead.

Once the final metric values to be used are known, the
Severity of the situation can be calculated:

Listing 4 The calculated Severity of the situation

Severity(CPU, RAM)=1/1-0.7332 + 1 - 0.0332=0.806

Using severity zones - based techniques

To accurately find the Severity zone for a detected situ-
ation, we need to know the number of the Severity zones
which will be used, and the number of attributes which
are monitored in each situation. To satisfy the first need,
we assume throughout this work that three Severity
zones will be used. To satisfy the second need, we can
see from the active rule (Listing 3), that there are two at-
tributes which are monitored (AverageCPU_ s, and
AverageRAM_jyster). Following the random point gener-
ation and sorting, the Severity zones are determined to
have the upper bounds indicated in Table 3.

As already stated, the upper bound of each rule refers
to the deviation from the threshold values, which when
normalized are equal to zero. The highest upper bound
of Severity zone 3 reflects the situation which has moni-
toring attribute values with the maximum deviation
from the thresholds set by the DevOps observed when
all monitoring attributes reach their maximum value,
and is equal to /7 — in this case v/2.

The Severity of the situation calculated in Listing 4 is
greater than the first upper bound, and as a result the
situation is marked as Severity zone 2. This can be visu-
alized in the following illustration, depicting the Severity
classification of all points which indicate a detected situ-
ation. The reported average RAM consumption is indi-
cated in the vertical axis, while the reported average
CPU consumption is indicated in the horizontal axis.
Following the wupper bound calculation method
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Table 3 Upper bounds for three Severity zones with two
attributes

Severity zone Calculated upper bound

1 0651
2 0.921
3 1414

presented above, the three Severity zones are depicted in
Fig. 2.

As expected, the situation initially observed (average
CPU =92%, average RAM =71%) is located inside the
second Severity zone.

In the case of a more complex rule with three attri-
butes and four Severity zones, situations would appear
as points in a three-dimensional space, and three spher-
ical shells would be needed to mark the boundaries of
the zones. In Fig. 3, red points indicate possible situa-
tions, and the three shells indicate the limits of each Se-
verity zone. Situations which are ‘outside’ all shells
belong to zone 4, while situations which are ‘inside’ all
shells belong to zone 1.

Prototype implementation

Apart from developing a simulator to rapidly assess the
response of a system using any of the techniques dis-
cussed in Section 4 we also developed an application
adaptation manager — implementing the functionality of
the Situation Detection Mechanism (SDM), and also in-
corporating the calculation of the Simple severity zones
technique. The operation of this software with real mon-
itoring data, proves the feasibility of our approach. The
source code of our software is publicly available in
Gitlab: https://gitlab.com/prestocloud-project/situation-
detection-mechanism-v2

An overview of the subcomponents involved in the
process of the situation detection and the subsequent
platform adaptation is provided in Fig. 4.

The Situation Detection Mechanism is assumed to be
part of a platform which manages the adaptation of a
cloud application by issuing appropriate scaling direc-
tives. Therefore, the subcomponents illustrated in Fig. 4
are not part of the cloud application, but instead form
the internal architecture of the SDM. The architecture
of the Situation Detection Mechanism is structured
around the usage of a common message bus, in this case
the RabbitMQ" broker. This allows not only the decoup-
ling of subcomponents, but also an abstraction layer
over the monitoring data which is sent by monitored de-
vices. The mechanism which is used to retrieve monitor-
ing data from the application is agnostic to the Situation
Detection Mechanism. The SDM can handle the

Thttps://www.rabbitmgq.com/

(2021) 10:45 Page 12 of 26

monitoring of a processing infrastructure composed of
any kind of processing machines (VMs, Physical Ma-
chines PMs, Containers, Network and edge devices), and
receiving any number of processing attributes values,
with the proper configuration by the DevOps. Informa-
tion on the situations which are detected by the SDM is
sent through the message bus to an external component,
the Resources Adaptation Recommender (RARecom),
which issues the actual scaling directives.

The input from the DevOps which triggers the moni-
toring cycle are the elasticity Rules which are created
using an appropriate user interface (UI). This user inter-
face allows the DevOps to select the monitoring met-
ric(s) which should be monitored for a particular
component of the deployed cloud application, and the
threshold(s) which need to be set. Once an elasticity rule
is received by the SDM, it subscribes to the RabbitMQ
broker which is directly connected with the infrastruc-
ture instances. Then, it can start consuming monitoring
events which are related to the metrics of the rule. The
flow of monitoring events appears over the message bus
in the uppermost part of the figure.

The Rule Interpreter module undertakes the conver-
sion of elasticity rules to queries understandable by the
Siddhi streaming input processor [34]. These queries use
monitoring data to detect a new situation. To translate
an elasticity rule, we first determine the monitoring met-
rics which are specified in it. Then the source (Siddhi
stream) for these values is determined, and a suitable
Siddhi query is programmatically constructed to retrieve
the values. In Listing 2 above, we described an example
elasticity rule which can be used to govern the scaling of
an application outwards. The representation of the gen-
erated Siddhi query for this rule can be seen in Listing 5.
We assume that cpu_perc, mem_perc, fragid and res_
inst are monitoring attributes contained in a Siddhi
monitoring stream named ‘serverStream’ (fragid is the
component id and res_inst is a unique identifier of the
monitored resource).

Listing 5 Siddhi query created for example elasticity
rule

define stream scalability_rule_stream (avg_cpu_perc double, avg_
mem_perc double, fragid string, res_inst string);

from serverStream#fwindow.timeBatch(600 s) [fragid == ‘1cc5Fragment’]

select avg. (cpu_perc) as avg_cpu_perc, avg. (mem_perc) as avg_
mem_perc, fragid, res_inst

having avg_cpu_perc >70 and avg_mem_perc > 70

insert into scalability_rule_stream;

The check for a possible previous adaptation which
could have happened within the cooldown period is
implemented by Java code which is external to Siddhi.


https://gitlab.com/prestocloud-project/situation-detection-mechanism-v2
https://gitlab.com/prestocloud-project/situation-detection-mechanism-v2
https://www.rabbitmq.com/
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Fig. 2 Severity zones in the case of two metrics and three zones
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Detected Situation Attribute 2
(e.g. CPU)

The choice to use Siddhi builds upon our previous
work [35]. Using Siddhi, the SDM can detect when the
monitoring attribute thresholds set in a rule are
surpassed in which case the elasticity rule is violated,
and a situation is detected. Once a situation has been
detected it is associated with a Severity zone by the
Severity Zone Calculation module which performs the
calculations which are required. Subsequently, the
detected situation and information related with its
Severity is published to the broker using an appropriate
situation event for further processing by the RARecom
which will consume it. The RARecom can then process
these events to determine the number of instances that
will be needed for the scaling adaptation (according to
the flavour of the Severity zones technique which is
desired, or even perform a new and independent
assessment of the situation using another technique).

Evaluation

Benchmark & error metric choice

In order to evaluate the efficiency of our approach, we
conducted a series of experiments — simulating both
components which are involved in the implementation
of an adaptation, the SDM and the RARecom. Our
simulations varied both regarding the input of the
DevOps (i.e., the elasticity rules), and the characteristics

of the incoming workload. Moreover, we experimented
with a varying amount of resource provisioning time
delay that follows a realistic adaptation implementation
behaviour. Moreover, one of these delays was set to zero
which reflects one of the key elasticity aspects of an
ideal cloud platform [36].

The rule approaches which have been adopted by
some of the main commercial Cloud vendors are based
on the use of one or more static rules, which should be
created by the DevOps [14]. Using our approach, the
DevOps is required to setup only a single rule for scale
out, and a single rule for scaling in (per metric
combination). Then, this rule can be used as an input
for a multitude of techniques based on the concept of
Severity. In this section we evaluate the techniques
which were discussed in Section 4 along with common
approaches which are found in commercial systems —
using either Simple threshold (ST), or the Maximum
attribute control loop (MACL). We only use one rule for
scaling up and one rule for scaling down (using 2
attributes in the case of 2-metric workloads, 3 attributes
in the case of 3-metric workloads and 4 attributes in the
case of 4-metric workloads). Specifically, the threshold
pairs which were tested appear in Table 4.

The maximum number of attribute values which
were examined simultaneously was 4, although the
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Fig. 3 Severity zones in the case of three metrics and four zones
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concept of Severity can handle an arbitrary number
of metrics. Also, the wupper threshold for both
attributes was chosen to be the same for both
attributes, for reasons of simplicity. At this point we
assume that the nature of the workload is only
roughly known to the DevOps — which in turn does
not allow the fine-tuning of the rules and permits
only a simple selection of the thresholds. Attributes 1
to 4 may reflect any metric (e.g., CPU, RAM, Disk
usage, Network bandwidth utilization etc.). The start-
ing point for these experiments is the definition of
elasticity rules by the DevOps. These rules dictate the
scaling in or scaling out of the platform - also re-
ferred to as an adaptation action — to accommodate
the load which is induced by the cloud application.
We then applied each pair of rules in Table 4 to han-
dle the workloads presented in Figs. 5, 6, 7 and 8, re-
configuring the application and collecting metrics on
its performance. The time window of the rules was
set equal to one-fifth of the VM spawn duration with
a minimum duration of 3s (ie, 3, 3, 6 and 12s for
the 0, 15, 30 and 60s spawn intervals which were
tested). No distinction was made between VM spawn
delays and VM deallocation delays, thus whenever in
this work VM spawn delays are mentioned VM deal-
location delays should also be considered equal. A
cooldown period of 10s was required between succes-
sive adaptations for all rules.

Optimally, we would prefer to use the available
resources to their maximum capacity, while also serving
the traffic appropriately and having maximum stability.
However, to attain this ideal goal, it is required to be
able to accurately know the current and future demand
of the service so, unavoidably some deviation (error) will
exist in at least one of the above-mentioned goals. Thus,
the thresholds of the rules should be created by a field
expert considered able to balance the risk of service un-
availability, with the number of resources which are
overprovisioned and application stability. To evaluate
the proposed techniques based on Severity, we have con-
sidered various benchmarking metrics which are de-
scribed in Table 5.
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Other approaches have also been using similar metrics
in their experiments. For example [14, 18] examined the
number of containers and VMs respectively (which can
be related to cost) and the response time for different
techniques, while [37] examined cost and execution time
(which can be converted to a question between cost and
availability). In a thorough review of cloud elasticity [36],
the authors mention eagerness, sensitivity and plasticity
(related to our ‘rigidness’ metric), quality of service
(indirectly related to our ‘availability’ metric), cost,
oscillatory  behaviour/thrashing (related to our
‘adaptations’ metric) and precision (related to our
‘overprovisioning’ metric) as principal aspects of service
elasticity which should be considered in an elastic
system.

In our experiments, we used four workload types,
most of which were characterized by their frequent and
abrupt changes in the workload. Each workload type
included two, three or four workload patterns, one for
each of the metrics. We used a separate pattern per
processing metric in three workloads (the green line
reflects values of the first metric, while the red line
reflects values of the second metric, the blue line the
values of the third metric and the yellow line the fourth
metric) - the linear workload used the same pattern for
all metrics. In experiments using two metrics we used
the red and green lines, in experiments using three
metrics we used the red, green and blue lines, and in
experiments with four metrics we used all four lines.
Unlike other approaches (e.g., [14]) we normalized
workload values against the processing capacity of a
single VM, which is assumed to be 100% per processing
metric resource. The x-axis of all workload types repre-
sents the time in seconds which has elapsed since the
start of the experiment.

It can be readily observed that the four workload types
have values which surpass 100% for each of the
attributes which are involved. We interpret these values
as a need for more resources which would require
additional VMs. Specifically, a value pair of (1%, 200%)
in workloads having two attributes means that at least
two VMs are needed for the handling of this workload

Table 4 The upper and lower thresholds of the elasticity rules which were used

ID Scale Out Rule Threshold (greater than operator) Scale In Rule Threshold (less than operator)
Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 70 70 70 70 30 30 30 30
2 65 65 65 65 55 55 55 55
3 80 80 80 80 70 70 70 70
4 80 80 80 80 55 55 55 55
5 90 90 90 90 80 80 80 80
6 90 90 90 90 10 10 10 10
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type even though the first attribute only consumes 1% of
the resources. In this work, we consider all VMs to have
the same processing capacity, i.e., we do not take into
account different VM types. Moreover, the processing
capacity of a VM does not correspond to the processing
capacity which is offered by a particular VM flavour of a
cloud vendor.

Evaluation results

In this section, we discuss the results of each proposed
technique when applied in different representative
workloads, with respect to the benchmarking metrics
discussed in Section 7.1. The results were gathered by
means of a Python simulator which was developed
specifically for the needs of this work. The simulator
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produced an output file containing the simulated
timestamp - a constant time interval was added between
successive timestamps, and information on the current
real load on the application, the optimal number of
instances which could handle the workload, and whether
the workload is over the operational thresholds set by

the DevOps. Both the code as well as all of the workload
traces which were used are available upon request.

In Table 6, we present the minimum and maximum
value for each combination of benchmarking metric,
VM spawn delay and 4-metric workload, regarding the
Maximum attribute control loop and Severity value
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Table 5 Description of the benchmarking metrics used for the evaluation of Severity-based techniques

Benchmarking metric Description

Availability

The percentage of time for which the workload pattern for a particular metric was not demanding more than the

processing capacity of the infrastructure offered. We do not distinguish whether the processing capacity was exceeded
by a small or large margin - in both cases the service is considered unavailable for the purpose of our experiments.
Moreover, we considered that the lack of availability of the service at a particular instance of time does not influence the
ability of the service to handle the workload correctly as soon as it receives the resources which are required.

Overprovisioning

Rigidness

The product of the extraneous VM instances which were used (compared to the optimal) with the percentage of
simulation time for which they were spawned.

The time percentage of a simulation, for which the application was working either above or even below the rule

thresholds set. For example, if a rule on a metric states that a scale out action should happen when the value of the
metric surpasses 70%, while a scale in action should happen when the value of the metric drops below 30%, the system
is considered to be exhibiting ‘rigidness’ when the value of the metric is greater than 70% or lower than 30%.

Number of scaling
adaptations

The total number of scaling adaptations (associated with an addition or removal of a number of VMs) which were
performed by the platform. The first deployment is also counted in this number.

techniques. The Severity value technique exhibited the
best performance overall in the four criteria which were
defined. We also included data for the Maximum attri-
bute control loop technique as it had better performance
than the Simple threshold technique. Therefore, it repre-
sents the best of the two techniques which are inspired
from commercial offerings and are considered in this
work.

Ranges were calculated from the output of the
simulations which used the rule pairs which are
included in Table 4. The complete dataset with the exact
performance of all techniques on every rule pair, every
spawn delay and every workload examined is available as
part of this work [38]. All values in Table 6 reflect

Table 6 Techniques comparison matrix (4 metric workloads)

percentages, except for the number of scaling
adaptations which is an integer. Positive values in
availability reflect the percentage of the time that the
platform could satisfy the load with the existing
resources. Positive values of rigidness indicate the
percentage of the time that the metric values of the
platform were outside the acceptable range set by the
greater-than and less-than thresholds. Positive values in
overprovisioning indicate a percentage of superfluous
VMs which were commissioned by a technique to han-
dle the load, compared to the number of VMs which
would exactly match the workload, utilizing their re-
sources up to 100%. As discussed above this is an un-
realistic case, as the DevOps needs to set thresholds

Technique = Workload Overprovisioning Availability Rigidness # of Adaptations
o- 15 30- 60- o0- 15 30- 60- O 15~ 30- 60- 0- 15 30- 60
delay delay delay delay delay delay delay delay delay delay delay delay delay delay delay delay
Severity Periodically 462 -505 -434 -612 190 250 232 200 39 179 333 242 16 16 27 15
value !;fgsmg W 91 159 318 93 471 518 526 412 503 753 755 682 63 48 46 38
Linearly 101 09 225 198 612 466 472 416 02 134 134 153 23 11 11 1
increasing 499 425 1281 928 1000 989 959 867 821 905 923 931 118 65 52 46
Periodically 94 -243 -364 -305 303 287 253 284 02 56 104 154 8 8 9 12
;lnucgfjasti%gn:mh 286 450 577 147 730 723 661 574 227 505 657 712 43 43 42 31
Polarized 619 758 -792 482 306 125 125 281 294 541 635 331 32 32 38 27
578 740 729 -235 329 125 125 464 363 575 743 529 33 34 40 39
Maximum  Periodically 736 -754 720 653 92 92 83 99 335 399 347 368 31 30 27 25
i;tr:'t?gltfo op ;';Jfgsmg W 349 420 363 -183 330 204 244 246 650 755 742 700 47 48 46 43
Linearly 101 81 88 -163 1000 96 617 460 02 222 277 301 23 23 21 21
increasing 505 483 435 660 1000 991 959 877 121 400 898 915 31 31 52 45
Periodically ~ -116 -132 -357 -387 347 327 148 231 31 123 153 246 12 13 12 20
;?chfjasti%gnyith 310 263 262 406 731 665 632 603 105 241 408 550 25 23 32 30
Polarized 797 797 792 -822 125 125 125 125 349 541 635 301 32 32 38 31
708 765 -774 -448 125 125 125 294 367 575 743 513 33 34 40 51
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below 100%, but it is nevertheless the optimal case con-
cerning overprovisioning. Negative values in overprovi-
sioning portray a usage of a smaller number of VMs
than the optimal, which by definition impacts
availability.

For brevity, for the cases of 2 metric and 3 metric
workloads we provide a quick summary of the results
and two indicative figures. Similar to Table 6, we
provide the minimum and maximum values for each of
the benchmarking metrics — the top edge of each bar
reflects the maximum value and the lower edge the
minimum value. Percentage values are used for the
measurement of the benchmarking metrics with the
exception of the number of scaling adaptations metric
which is an integer. Figure 9 illustrates an example case
comparing the performance of the SV algorithm with
the MACL algorithm, in a 3-metric workload setting.
Similarly, Fig. 10 illustrates a comparison of the per-
formance of the SSZ algorithm vs the MACL algorithm
in an example case using a 2-metric workload.
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Figure 9 illustrates an extreme case in which the
severity = technique completely outperforms the
maximum attribute control loop technique. It is
reminded that the range of observed values for each
attribute of each technique 1is the result of
experimenting with multiple scale-in and scale-out
threshold pairs. The severity technique both allows a
wider range of choices and can also obtain the best
values in each of the four measured criteria. The
prioritization of these criteria should be performed by
the DevOps, who can then choose the most appropriate
scaling technique among the suggested techniques. In
this particular example, using the severity technique one
may choose whether to avoid the underprovisioning of
the service to obtain higher availability, lower rigidness
and a lower number of adaptations. Such a choice is not
available when using the maximum attribute control
loop technique.

Figure 10 illustrates a case typical of the relative
performance of the simple severity zones and maximum
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Fig. 9 An example case (2 metrics workload, 15 s delay and ‘Periodically increasing with spikes” workload) in which the severity technique
outperforms the maximum attribute control loop technique




Tsagkaropoulos et al. Journal of Cloud Computing: Advances, Systems and Applications

attribute control loop techniques in 2 metric workloads.
In this case the maximum attribute control loop
technique slightly outperforms the simple severity zones
technique. However, based on the experimental data the
simple severity zones technique can offer better
availability and smaller overprovisioning, provided that a
much greater number of reconfigurations and increased
amount of rigidness can be tolerated by the application.
Table 6 as well as the data collected during the
experiments with 2 metric and 3 metric workloads
illustrate numerous cases in which Severity-based tech-
niques obtain better results than other techniques which
are currently used by cloud vendors. To further illustrate
a comparison between the different techniques, we as-
sumed a use-case which emphasizes availability (av), low
overprovisioning (op), low rigidness (rg), and a low
number of scaling adaptations in turn (ad). The coeffi-
cients pertaining to each of the evaluation criteria
appearing in the utility function of the particular use-
case were chosen in order to assign more weight to high

(2021) 10:45 Page 20 of 26

and a low number of scaling adaptations. The utility
function using the benchmarking metrics, as well as
their weights appear in bold in Eq. 11. Apart from the
weights, the constant terms of the utility function are
chosen to normalize the values of the evaluation criteria.
Higher utility values indicate a more preferable
performance.
Equation 11 Example Utility Function

_2"” ) + 1x(1-7g) + 1x(1-(ad-5)x0.00877)

1
3xav + 2*(
u=

7
(11)

Tables 7, 8 and 9 illustrate the performance of each
technique against each of the four workloads which
were used, in the experiments conducted using 2, 3 and
4 metrics respectively. Each cell contains four values
which from top to bottom reflect Utility values with a
varying delay of 0,15,30 and 60s, respectively. The
following abbreviations are used: Absolute severity value

availability and low overprovisioning than low rigidness  (ASV); Maximum attribute control loop (MACL);
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Fig. 10 An example case (3 metrics workload, 15 s delay and ‘Periodically increasing with fluctuations' workload) in which the maximum attribute
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Normalized absolute severity (NAS); Normalized
absolute severity control loop (NASCL); Normalized
severity value (NSV), Severity value (SV), Simple severity
zones (SSZ), Relative severity zones (RSZ); and Simple
threshold (ST). Underlined values indicate an
(approximate) tie between algorithms, while bold values
indicate the superiority of an algorithm.

From the data which is presented in Tables 7, 8 and 9,
we observe that Severity-based techniques obtain the
best results in the majority of the test-cases, whether 2,3
or 4 dimensions are used. The number of metrics used
does not significantly influence the utility values which
are obtained, although when fewer metrics are used the
utility values are in general slightly increased. Also, we
can observe that the increase in the delay to spawn or
deallocate instances in general results in lower utility
function values for the same technique.

Further, it is apparent that some techniques are more
suitable for particular cloud application settings, while
others are consistently outperformed. The Simple
threshold technique does not perform well under any
workload, indicating that either a different number of
instances should be added/removed in challenging
workloads, or it should not be used. The Maximum
attribute control loop technique is a better contender,
but it is not so effective when the spawn delay is
increased to 60s. This can be attributed to its control-
loop character which tries to stabilize the values of the
metrics around a desired threshold. However as most
workloads change rapidly and its decisions are enforced
with a delay, the stabilization is obsolete — resulting in
either overprovisioning, or underprovisioning and loss of
availability. This characteristic is shared with the Nor-
malized absolute severity control loop method. On the
contrary, the Simple severity zones technique consist-
ently attains the best results when the spawn delay is 30
and 60s and is excellent in handling linear-like
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workloads. Moreover, the Severity value technique at-
tains excellent results when the delay is zero (and in 10
of the 12 cases when the delay is 15), has consistently
the best performance in the ‘periodically increasing with
fluctuations’ workload, and is the technique which at-
tains the best value more often.

Table 10 contains the average improvement of the
utility function from the usage of Severity-based
techniques.

To determine the values of Table 10 we need to
determine the best Severity-based and commercially in-
spired techniques. The sole criterion which is used to find
the best technique is the higher utility function value it at-
tains using the most favourable thresholds (for it).

For the first row of Table 10 we calculate the
improvement of the best Severity-based adaptation tech-
nique against the best commercially inspired adaptation
technique per workload and VM spawn delay (16 combi-
nations). The average of this improvement is used to de-
termine the values of this row. To fill the values of the
second row, we determine the Severity-based technique
which has the highest average utility value across all
workloads and VM spawn delays (for the particular
workloads). We then calculate the average improvement
when using the best Severity-based technique against the
best of the commercially inspired techniques. The third
row contains the best of the Severity-based techniques,
in terms of the highest average utility value, calculated
over the best choice of thresholds for each technique in
each experiment setting (i.e, workload and spawn
delay).

It is important to note that in all cases the highest
values of the utility function are produced using
Severity-based techniques. In the three experiment sets
(with 2, 3 and 4 metrics), a total of 48 combinations of
workloads and VM spawn delays were evaluated. The
Maximum attribute control loop technique was only

Table 7 The performance of each technique using 2-dimensional workloads and a variable spawn delay

Workload ASV MACL NAS NASCL NSV sV RSZ SSZ ST
Linearly increasing 078 0.82 0.78 0.82 0.80 0.82 0.82 0.82 0.82
0.66 0.77 0.74 0.77 0.76 0.78 0.77 0.78 0.77
042 0.74 0.55 0.74 0.69 069 0.74 0.75 0.74
064 0.66 0.69 068 068 067 0.65 068 0.68
Periodically increasing with spikes 0.65 063 064 067 072 072 072 072 063
0.59 0.59 0.56 0.60 0.62 061 061 0.65 0.60
052 061 0.51 061 0.56 049 061 0.64 061
0.57 061 059 061 0.60 058 062 0.63 0.60
Periodically increasing with fluctuations 0.70 069 069 069 069 0.71 069 067 059
063 066 067 065 069 069 067 065 056
0.54 065 067 063 0.60 067 063 0.66 0.56
063 059 064 057 062 065 057 065 053
Polarized 065 060 058 060 0.56 0.65 0.54 057 0.54
057 057 057 057 057 057 053 048 053
0.56 0.55 0.55 0.55 0.54 0.55 0.54 053 0.54
0.60 062 063 062 0.64 061 062 061 0.62
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Table 8 The performance of each technique using 3-dimensional workloads, and a variable spawn delay

Workload AsV MACL NAS NASCL NSV sV RSZ SSZ ST
Linearly increasing 078 0.82 078 0.82 0.80 0.82 0.82 0.82 0.82
066 077 0.74 077 0.76 078 077 078 077
042 0.74 055 0.74 0.69 0.69 0.74 0.75 0.74
064 0.66 0.69 068 0.68 0.67 065 068 0.68
Periodically increasing with spikes 063 053 061 0.55 062 0.66 054 053 049
055 047 055 049 0.60 0.61 052 054 048
050 048 051 047 0.59 057 050 059 047
0.55 049 0.59 0.50 0.60 0.57 0.54 0.58 0.50
Periodically increasing with fluctuations 0.69 0.68 0.68 0.68 067 0.70 0.68 0.66 0.57
062 0.65 0.66 0.64 0.68 067 0.66 0.64 054
053 063 065 062 0.59 065 062 0.64 053
062 058 062 056 061 063 056 063 051
Polarized 059 053 0.52 053 049 059 048 051 048
050 051 050 051 050 050 047 045 047
0.50 049 048 049 048 048 048 0.53 048
057 0.56 0.60 0.56 059 058 0.55 0.56 055

thrice able to equal this exact maximum value — which
besides was attained by the Normalized absolute severity
control loop technique. In Tables 7, 8 and 9 above this
appears to happen more often due to rounding.

From the evaluation of the scaling methods, the
following directions on the use of our approach can be
established:

e Using data from additional metrics (even partially, as
the Maximum Attribute Control Loop technique
does) in general leads to better estimations.
Therefore, we support the research on algorithms
which use data from multiple metrics, when all of
them are related to the need for scaling.

e Some “non-functional”, desirable characteristics
when choosing a particular algorithm are its
adaptability, its extensibility and its explainability.
Severity as a concept lends itself to many extensions;
in addition, the algorithms which are based on it are
both adaptable and explainable.

e Techniques which have a very aggressive or very
mild spawn/deallocation behaviour, are not
recommended for rapidly changing workloads, when
threshold-based rules are to be used.

e By consulting the full results of the simulations, we
can observe that even for single evaluation metrics
(e.g., Overprovisioning) Severity-based techniques
attain the best (in this case the lowest) value in the
greater majority of test cases, independent of the
number of metrics used, or the workload or the
spawn delay. Moreover, in many of the cases that
commercial-based scaling techniques (Simple
threshold, Maximum attribute control loop) attain
the best value, this value is also produced by a
Severity-based technique.

Discussion

The approach which has been presented in this work
can be used to improve the response of systems which
face difficult workloads. It can abstract the input

Table 9 The performance of each technique using 4-dimensional workloads, and a variable spawn delay

Workload name ASV MACL NAS NASCL NSV sV RSZ SSzZ ST
Linearly increasing 078 0.82 078 0.82 0.80 0.82 0.82 0.82 0.82
066 077 0.74 077 0.76 078 077 078 077
042 0.74 0.55 0.74 0.69 0.69 0.74 0.75 0.74
0.64 0.66 0.69 0.68 0.68 067 0.65 0.68 0.68
Periodically increasing with spikes 0.59 0.50 0.57 0.51 0.58 0.62 0.51 0.50 045
052 045 052 046 0.58 0.59 0.50 052 045
047 046 048 044 0.56 0.54 047 0.57 045
0.53 047 0.56 048 0.57 0.54 0.51 0.55 047
Periodically increasing with fluctuations 0.69 0.68 0.68 0.68 067 0.70 0.68 0.66 0.56
062 065 066 064 067 067 066 064 053
0.53 063 0.65 0.62 0.59 0.65 061 0.64 053
0.62 057 0.61 0.56 0.60 0.62 0.56 0.63 0.50
Polarized 057 051 050 051 047 057 045 049 045
048 048 048 048 048 048 044 044 044
047 046 046 046 045 046 045 0.50 045
0.58 052 0.55 053 0.60 0.58 0.51 056 0.51
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Table 10 Improvement of utility function values from Severity-based techniques

2-metric workloads 3-metric 4-metric
workloads workloads
Maximum improvement over best commercial technique evaluated 4.09% 7.86% 8.54%
Best single-technique improvement over best single commercial technique 1.26% 5.88% 6.53%

evaluated

Best Severity-based technique

Simple severity
zones

Severity value Severity value

necessary for devising elasticity rules and help the
DevOps to guide the operation of a cloud application in
a more effective manner. Familiar concepts found in
traditional rule-based systems, such as aggregations,
thresholds and cooldown intervals are still the basic
building blocks. Therefore, it also reaps the benefits as-
sociated with rule-based adaptivity, such as lower updat-
ing overhead, relative genericity with respect to the
workload managed, lower computational complexity
when compared to other approaches [39]. Moreover, it
can automatically use information from a multitude of
monitoring attributes which can be provided in each
elasticity rule and not only from a limited, hard-coded
selection between average CPU, response time and num-
ber of requests.

In contrast to traditional rule-based approaches, the
choice of the metrics which should be monitored, and
the appropriate threshold values, needs to be comple-
mented by the choice of an appropriate scaling tech-
nique. Depending on the nature of the workload and the
time required to spawn new processing instances, the
DevOps should choose the technique which is the most
appropriate. As an example, if only two metrics are con-
sidered, availability is a priority, the spawn delay is 60 s
and the workload is similar to the periodic workload we
used, a severity-based technique such as normalized ab-
solute severity, severity value and absolute severity value
are worth considering. If attaining the most stable de-
ployment (i.e., having low rigidness and a low number of
adaptations) in 3 metrics periodically increasing work-
loads is essential, then the severity value and normalized
severity techniques can be considered. Overall, the work-
loads which we provide and the data associated to each
of them, can serve as an initial point of reference for fur-
ther work and investigation.

The value of our proposal was demonstrated using a
utility function which prioritizes the correct provisioning
and service availability while also favouring application
stability. The evaluation metrics generated by the Simple
severity zones and the Severity Value techniques yield a
better result (higher utility function values) overall,
compared to any of the other commercially inspired
techniques. Moreover, other Severity-based techniques
also demonstrate at least equal and in general better re-
sults (than the commercially inspired techniques) in the

isolated testcases which are not covered by the two best
techniques. We consider these advantages as a direct
contribution to the elasticity capabilities of any cloud ap-
plication facing challenging workloads.

The superiority of some techniques over others which
is underlined above is attributed to their design, and the
choice of the utility function. For example, if a technique
sacrifices availability to reduce overprovisioning it will
have a reduced utility function score if Eq. 11 is used. In
turn, the performance of each technique in each of the
performance metrics is directly related to its decisions to
spawn or deallocate processing instances.

Notwithstanding, the definition of the Severity value
can provide an aggregate view of the current situation,
for a number of metrics which violate a given elasticity
rule. It also decouples the detection of a situation, from
the adaptation which will be triggered. This enables the
creation of hybrids which can exploit threshold-based
rules as a first stage before triggering another adaptation
method, e.g., control loops. When the number of # is
relatively small (e.g., # < 10), the calculation of Severity is
very fast. The most important advantage of calculating
the Severity value, however, is that it provides a uniform
way to measure the importance of a situation, when
multiple metrics are involved.

We evaluated several techniques which used no input
from the DevOps other than the threshold value and the
direction of the scaling. Note that different options
could have been considered for some techniques. For
example, we could have examined a flavour of the
Simple Threshold technique adding or removing 3
instances, or a flavour of the Relative severity zones
technique using k=0.2 rather than k=0.1. Hence, the
tables which are included in the Evaluation results
section serve not as an exhaustive comparison, but
rather as an indicator of the suitability of each technique
for intense workloads.

Overall, the results appearing in Table 10 are
dependent on the datasets which were used and on the
design of the experiments. However, we hold that we
considered indicative cases by using multiple workloads,
spawn delays and threshold pairs. Concerning the
evaluation itself and the time intervals which were
selected, we underline that although seconds were used
for the purposes of comprehensibility, the results would
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have been unchanged if the time unit used in the
workloads and the formulation of rules was changed to
minutes, hours, or by any other proportionate factor.
Consequently, even if a workload was less intense but
followed the same pattern the same results would still be
observed if the windows of the rules and the cooldown
period were also changed proportionately.

As regards the exploitation of the techniques which
are illustrated in this work in applications from industry
(e.g., based on Kubernetes), we propose that they are
first implemented in any programming language. Then
they should be configured to interface with the
programmatic APIs of the platforms or the cloud
provider(s) on which the application is deployed to scale
it as necessary. In order to produce informed
autoscaling decisions, a suitable metric monitoring
mechanism will be necessary to feed the values for each
metric to the technique at the desired frequency (the
tools provided by the cloud provider(s) could also be
sufficient).

Conclusions & Further work

In this work we presented a novel algorithmic approach
aiding the adaptation of cloud applications - Severity.
The DevOps can select any number and any type of
monitoring variables — whether bounded or unbounded
— to determine the need for an adaptation. The resulting
elasticity rules enable finer-grained adaptation decisions
compared to rules featuring a single static threshold per
rule, or a single scaling action. Besides, elasticity rules
are easy to create, easy to process, easy to understand
and transfer between applications, and do not require an
extensive training period for the system. Based on these
elasticity rules, we are able to detect situations, calculate
their Severity and propose adaptations which can lead to
better application performance. Our approach has been
proved to be consistent after its evaluation on four dis-
tinct workload types, with a variable delay between de-
ployments. We demonstrated the beneficial results of
using the Simple severity zones and Severity value tech-
niques to handle two, three and four monitoring attri-
butes against adaptation techniques representative of
those offered by commercial vendors (with the exception
of machine-learning based techniques). The implemen-
tation of the Situation Detection Mechanism, able to
parse rules, converting them to a format understandable
by the Siddhi complex processing engine and producing
output based on the Simple severity zones technique in-
dicates the feasibility of integrating our approach with
existing solutions from the industry.

In the future, the capability to simulate interdependent
workloads and the support for more elaborate work
allocation schemes (e.g., workload per API request) can
lead to finer-grain experiments, and permit a better
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understanding of the suitability of certain adaptation
techniques for particular processing topologies.

Further, the approach which has been outlined above
currently only considers horizontal scaling of resources.
However, vertical scaling is also very important in the
field of cloud application adaptation. This direction of
work can noticeably decrease the time required to adapt
the application, and therefore needs to be carefully
examined.

Another research direction involves adding proactivity
to the estimation, the adaptation of the adaptation rules
themselves and the evolution of the presented
techniques. For example, we have worked on an idea
which evolves the concept of Severity-zone based rules,
to Severity-zone “Feedback rules”, using previous adap-
tations to guide successive ones. Alternatively, the
thresholds of Severity zones can be changed, or Severity
zones can be split into smaller areas, when a critical
number of situation samples have been detected in
them, followed by a modification of the adaptation ac-
tion for each area as appropriate.

Moreover, while our approach considers rules
provided by the DevOps as the primary input,
techniques such as association rules [40, 41] have been
implemented, allowing the discovery of new rules, based
on the received monitoring data [42]. These statements
can subsequently be used to automatically create new
rules which would have helped the application to
improve its response, had they been introduced in the
past.

Besides, the usage of a fixed (and in some cases small)
number of zones can lead to only a part of the Severity
zones getting activated, due to the nature of a particular
workload. In these cases, a greater resolution is more
necessary, and approaches such as Q-learning can be
more appropriate.
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