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Abstract

Edge computing has become a fundamental technology for Internet of Things (loT) applications. To provide reliable
services for latency-sensitive applications, edge servers must respond to end devices within the shortest amount of
time possible. Edge distributed denial-of-service (DDoS) attacks, which render edge servers unusable by legitimate loT
applications by sending heavy requests from distributed attacking sources, is a threat that leads to severe latency. To
protect edge servers from DDoS attacks, a hybrid computing paradigm known as an end-edge-cloud ecosystem
provides a possible solution. Cloud assistance is allowed with this architecture. Edge servers can upload their pending
tasks onto a cloud center for a workload reduction when encountering a DDoS attack, similar to borrowing resources
from the cloud. Nevertheless, before using the ecosystem to mitigate edge DDoS attacks, we must address the core
problem that edge servers must decide when and to what extent they should upload tasks to the cloud center. In this
study, we focus on the design of optimal cloud assistance policies. First, we propose an edge workload evolution
model that describes how the workload of the edge servers change over time with a given cloud assistance policy. On
this basis, we quantify the effectiveness of the policy by using the resulting overall latency and formulate an optimal
control problem for seeking optimal policies that can minimize such latency. We then provide solutions by deriving
the optimality system and discuss some properties of the optimal solutions to accelerate the problem solving. Next,

mitigate edge DDoS attacks.

Pontryagin minimum principle

we introduce a numerical iterative algorithm to seek solutions that can satisfy the optimality system. Finally, we
provide several illustrative numerical examples. The results show that the optimal policies obtained can effectively

Keywords: Edge-cloud computing, Distributed denial-of-service attacks, Cloud assistance, Optimal control,

Introduction

With the development of microcomputer technol-
ogy, Internet-of-Things (IoT) devices have been widely
deployed for data collection [1, 2]. However, IoT devices
have difficulty supporting resource-intensive applications
owing to energy and computational constraints. To tackle
this issue, edge computing [3, 4], a computation paradigm
that allows IoT tasks to be processed at the edge of the
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Internet, has been proposed for efficient computation
offloading. In recent years, this technology has been
applied to various applications, including smart grids
[5], connected health [6], and connected automated
vehicles [7].

Because edge computing has become a fundamental
technology for IoT applications, and edge servers (ESs)
must have strong security for providing reliable services.
Among common cyber threats to ESs, distributed denial-
of-service (DDoS) attacks [8, 9] can lead to severe results.
As the name suggests, a DDoS attack renders ESs unusable
by legitimate IoT applications by sending heavy resource-
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consuming requests from distributed attacking sources.
Because of the inherent vulnerabilities of IoT devices
[10-12], attackers can infect numerous IoT devices with-
out much effort and offload heavy tasks onto the ESs.
Consequently, the ESs will likely crash, and the response
time of the computation tasks will become too long to
ensure reliable services for latency-sensitive applications.
For convenience, we refer to this type of attack as an edge
DDoS attack. Figure 1 shows a diagram of the relevant sce-
nario. Therefore, defending against edge DDoS attacks has
become an essential issue in the field of edge computing
[13, 14].

Motivation

To mitigate edge DDoS attacks, a hybrid computing
paradigm known as an end-edge-cloud (EEC) ecosys-
tem [15-18] provides a possible solution, converging
the designs of cloud [19, 20] and edge [3, 4] comput-
ing. As shown in Fig. 2, such an ecosystem includes
a super-capacity cloud center, numerous constrained-
capacity ESs, and a large number of low-capacity end
devices. Computation tasks produced by the end side are
processed at either the edge or cloud side. The workflow
can be described as follows: First, IoT tasks arrive at a local
access point (AP) that connects the end and edge sides.
Then, with the control of a load balance scheme, the local
AP dispatches these tasks within the interconnecting net-
work of the ESs. Next, at an ES, some arriving tasks will
be processed immediately, whereas some will have to wait
for computational resources. If the resources of an ES are
insufficient, the ES can proactively outsource a portion of
pending tasks onto the cloud center, similar to borrowing
resources from the cloud side. Under this mechanism, if
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an edge DDoS attack occurs, the cloud side will act as an
emergency resource to relieve the workload of the edge.

Nevertheless, before implementing the above blueprint,
we must address the core problem, namely, when and to
what extent an ES should upload its pending tasks onto
the cloud center, thereby minimizing the impact caused
by DDoS attacks. We refer to this as the cloud assistance
(CA) problem, and refer to any solution as the CA pol-
icy. Solving the CA problem is complex. On the one hand,
with the constrained resource of an ES, a lower assis-
tance level will result in a higher computational latency;
on the other hand, because the bandwidth is a bottleneck
of the network core, a higher assistance level will result
in a higher communication latency. To provide reliable
services, ESs must respond to the end devices within the
shortest possible time. Therefore, an effective CA policy
should account for both computation and communication
delays and minimize the overall latency.

Contributions

In this study, a design for using the EEC ecosystem to mit-
igate edge DDoS attacks was developed. In particular, we
address the CA problem. Our contributions are as follows:

e We propose a novel dynamic edge workload model
that incorporates the changing workload of the ESs
under the effects of a DDoS attack, a load balance
scheme, and a CA policy. On this basis, we evaluate
the effectiveness of the CA policy by quantifying the
resulting overall latency, which consists of
computation and communication delays. Then, to
seek optimal CA policies, we formulate an optimal
control problem, where a solution represents a policy
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Fig. 2 A diagram of how an EEC ecosystem can mitigate an edge DDoS attack. The DDoS traffic, on the one hand, will be distributed among local
edge servers owing to the load balancer, on the other hand, will be uploaded onto the cloud center owing to the cloud assistance mechanism

and the objective functional stands for the resulting
overall latency.

e Based on Pontryagin’s minimum principle [21], we
derive the optimality system for solving the
formulated optimal control problem, which provides
a set of necessary optimality conditions. To accelerate
the problem solving, we then discuss some properties
of the optimal solutions. To solve the problem
numerically, we introduce an iterative algorithm
based on the forward-backward sweep method [22]
to find possible optimal solutions that satisfy the
optimality system.

e We provide several numerical examples to illustrate
the optimal CA policies. The results show that the
optimal policies obtained can effectively mitigate the
impact of DDoS attacks.

The remainder of this paper is organized as follows.
“Related work” section reviews related studies and out-
lines our innovations. “System modeling and problem
formulation” section is devoted to system modeling and
problem formulation. “Solution” section focuses on solu-
tions. Several numerical examples are provided in “Illus-
trative examples” section. The remainder of this paper is
organized as “Conclusion” section.

Related work

In this section, we discuss related studies and outline our
innovations. First, we review the efforts to mitigate DDoS
attacks. Second, we discuss the relationship between our
modeling approach and previous research on computing
offloading modeling.

Mitigation of DDoS attacks

A DDoS attack refers to any type of malicious opera-
tion that renders a server unusable by sending resource-
consuming requests. There are two major mitigation
approaches.

The first approach is devoted to the detection and elim-
ination of malicious requests. Researchers in this field
believe that there must be some differences between nor-
mal and malicious operations. On this basis, they analyzed
the features of different types of attacks and developed
corresponding protective methods, including behavior-
based approaches [23—-25] for detecting abnormal request
sequences, traffic-based methods [26, 27] for detecting
abnormal data flows, and request-based methods [28-30]
for detecting abnormal packets. However, the detectabil-
ity of malicious requests remains to be confirmed because
it is difficult to determine whether a sophisticated attack
can forge malicious requests that are extremely similar
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to the normal request. In fact, it was shown that bots
can forge the behaviors of human users and break some
commonly used security protections with the aid of artifi-
cial intelligence technology [31-34]. Therefore, detection-
based methods seem to require more fault tolerance to
defend against advanced DDoS attacks.

The other approach, which does not have to rely on
the detectability of malicious requests and hence has a
good fault tolerance for protecting against general DDoS
attacks, is to absorb the high-volume attacking traffic with
larger-capacity machines. We refer to this as a capacity-
based approach. An important technique in this field is
to use the content delivery network (CDN) as an emer-
gency resource to handle malicious operations [35-39].
When an attack occurs, idle CDN nodes copy the required
static contents as a cache from the origin ES and use
the cache to help respond to malicious requests, with-
out regard to the attack detail. With this universality, the
CDN-based method has become a popular commercial
solution for DDoS attack mitigation. However, when the
attack is designed to request different dynamic contents,
the CDN will have to continuously copy related content
from the origin ES. In this case, the origin of the ES
workload cannot be effectively reduced.

The use of an EEC ecosystem to mitigate edge DDoS
attacks is a possible solution that follows the capacity-
based approach. With this method, a super-capacity cloud
center is used as an emergency resource to help handle
enormous malicious requests on the edge side. Unlike the
CDN-based method, the ecosystem is a distributed cluster
in which any single component can function as an inde-
pendent origin server. Hence, when malicious requests are
distinct or dynamic, the ecosystem can protect ESs using
cloud resources. However, there are no references that can
inform the design of related policies for implementation,
and the CA problem remains to be solved.

In this paper, we focus on the design of effective CA
policies that will help develop the design of an ecosys-
tem to mitigate edge DDoS attacks. To the best of our
knowledge, this is the first study to make such an attempt.

Relations between our modeling approach and computing
offloading models

A computing offloading problem is about how to upload
the tasks generated from the end side onto the edge or
cloud side.

A common methodology to address edge computing
offloading problems includes the following three steps.
First, specify a static controllable decision variable. Sec-
ond, formulate a set of performance indice (e.g., the
energy consumption) for the static decision variable, and
reduce a computing offloading problem as a program-
ming problem (e.g., the nonlinear mixed integer program-
ming problem). Third, investigate the properties of the
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assignment problem and design a new algorithm with the
properties. See [40—42] for certain examples. For conve-
nience, we refer to all the computing offloading models
of this methodology as the static offloading models. In
a static offloading model, the decision variable will not
change over time, and the offloading process is usually
considered to be an instantaneous event. Static offloading
models are not suitable for the study of DDoS mitigation,
because a DDoS attack usually takes palce over a long
period.

Some studies consider the dynamic process of comput-
ing offloading. See [43—47] for certain examples. We refer
to all the related models as the dynamic offloading models.
In a dynamic offloading model, new tasks will be continu-
ously generated from the end side over time. Accordingly,
the decision variable is a sequence of time, and the change
of the decision variable will lead to the evolution of the
offloading process. Our modeling approach is similar to
the dynamic offloading modeling technique, because a
DDoS attack can be also regarded as a large-scale task
concurrent from the perspective of computing offloading.

However, to our best knowledge, existing dynamic
offloading models can not be directly applied in our study.
There are two reasons. First, load balance is an important
part of an EEC ecosystem, but the influence of different
load balance schemes is seldom considered in offloading
models. Second, we can hardly see any dynamic offloading
model that characterizes the cloud assistance process of
an EEC ecosystem. Therefore, we have to propose a novel
workload evolution model.

System modeling and problem formulation

In this section, we are devoted to designing an effective
CA policy for mitigating edge DDoS attacks. First, in order
to capture the effect of CA policies, we propose a novel
workload evolution model for ESs, accounting for differ-
ent load balance schemes applied to the edge computing
network. Second, we quantify the overall latency caused
by computation and communication delays. Then, we for-
mulate an optimal control problem for seeking optimal
policies.

A evolution model of edge workload distribution

Let us start by introducing some notations. As we men-
tioned before, the core of an EEC ecosystem consists of
a distributed edge computing network and a cloud cen-
ter. Suppose that the edge network is composed of M ESs,
each of which has a unique ID labeled by s1,s2,...,sM.
Because load balance is available in the network, we need
to model the relations among all ESs in terms of compu-
tation forwarding. Let S = {s1,52,...,5m} denote the set
of all ESs. Denote by e;; the edge from s; to s; if server s;
is able to forward its computation tasks to server s;. Let E
be the set of all such logical edges. Then, we use a graph



Li Journal of Cloud Computing (2021) 10:42

G = (S, E) to represent the computation forwarding rela-
tions among ESs. For convenience, denote by Ayrxar the
adjacency matrix of G, where A; = 1 or 0 according to
whether e; € E or not. In particular, let A; = 0 for all
i=12,...,M. Also, we define a modified matrix By« iy
where Bj = Ay, i #j,and B; = 1,i =1,2,..., M.

Consider a small time horizon ¢ €[0,T], in which a
developed policy makes effect. On measuring the impact
of an DDoS attack, we denote by «;(¢) the increase rate
of new computation tasks, which can be obtained by esti-
mation or prediction with the help of historical data.
Suppose that each ES has a infinite-length task queue,
and denote by w;(t) €[0,00] the workload of server
s; at time t. We refer to the M-dim function w(f) =
w1 (@), wa(t),...,wpy(t)), 0 < t < T, as the workload
distribution of the edge computing network. Denote by
u;(t) €[0,1] the related assistance rate at time t, which
controls the proportion of pending tasks that will be
transferred from server s; to the cloud. Then, the CA
policy is represented by the M-dim function u(t) =
(u1(t), ua(t), ..., up(t)). Assume that all CA policies are
Lebesgue integrable, and let Q2 be the set of all Lebesgue
integrable functions defined on the time horizon [0, T],
whose value space at any time is [0, 1]*. Then, we refer
to Q as the admissible set of CA policies. Accounting
for the influence of load balance, we denote by f;i(¢) €
[0,1] the computation forwarding ratio at time t, which
represents the proportion of pending tasks that will be
transferred from server s; to s;, provided that load balance
is available between the two ESs. Because of computation
conservation, we have Z,Ai1 Byfij(t) = 1 for any time ¢.

Next, we need to model how the workload distribution
will evolves over time under a given CA policy. Accord-
ing to the workflow of the EEC ecosystem, the workload
of an ES can be affected by three factors: (a) the computa-
tion increase due to the DDoS attack, (b) the computation
forwarding due to the load balance scheme, and (c) the
computation offloading due to the cloud assistance. On
the one hand, the workload of a server would increase due
to receiving new computation tasks from end devices and
peer ESs. On the other hand, the workload of a server
would decrease due to uploading computation tasks to
the cloud. The following theorem provides the dynamic
system of the workload distribution.

Theorem 1 The workload distribution w(t) evolves
according to the following dynamic system:

M
Wwi(t) = —wi(Owi(t) + O + Y Ajifii(D)e(B),

j=1

1)
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where wg € RM represents the initial workload distribu-
tion.

Proof Let At be a variation of time. For any time ¢,

¢ Due to the computation increase of the locality, the
workload of s; increases at the rate of «;(¢);

e Due to the computation receiving from other servers,
the workload of s; increases at the rate of
Y A0y (8);

¢ Due to the computation forwarding to other servers,
the workload of s; decreases at the rate
ai(t) YL, Aufy(®);

e Due to cloud assistance, the workload of s; decreases
at the rate of w;(#)u;(¢).

Therefore, it follows that
M

wi(t + At) = wi(t) + o; (£) At — wi(&)u;(t) At — o;(t) ZA,’]f,j(t) - At
j=1

M
+ ) Aifi(Hay () - At.

j=1
2)
As Z,Ai1 Bjifij(¢) = 1, we have

wi(t + At) — w;i(t)
At

o = i,

M
= a;(t) — wi)ui(t) + i (Ofi (D) + Y Aifi(H)(0).

j=1
3)
The proof is completed. O

With this dynamic system, we can predict the workload
of any server at any time, which provides the foundation
for quantifying the overall latency caused by a specific CA
policy. We refer to this dynamic system as the workload
distribution evolution model, also short for the workload
model.

Examples of load balance schemes

In the previous subsection, we proposed a workload
model for capturing the workload distribution dynam-
ics of the distributed edge computing system, where we
denoted by the function f the computation forwarding
ratio that represents the influence of different load bal-
ance schemes. In this subsection, we give examples of
charactering such type of functions.

In the first example, we consider the Round Robin
scheme [48], one of the most commonly-used load bal-
ance algorithms. In the RR scheme, a controller equally
dispatches newly-received computation tasks among ESs
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in spite of their current workload distribution. The for-
warding ratio from server s; to s; can be expressed as

1
RO = =— i=1...
! k=1 Bik

(4)

In the second example, we consider the Least Connec-
tion scheme [49]. Different from the RR scheme, the LC
scheme takes into account the current workload distribu-
tion of ESs. Among all servers, the one that is with a higher
workload will receive fewer tasks; on the contrary, the one
that is with a lower workload will receive more tasks, so
that the workload of each server can be maintained at the
same level as much as possible. The forwarding ratio from
server s; to s; can be expressed as

T Baowi(®) 1
w;(£) wj()

N[_ B; t - M PN L’
Y21 Bi- W Yim B e

i=1....M,j=1,...,M,0<t<T.

Fiiw=

(5)

As the workload of a server can be zero, let € be a small
number and let the function f;; be approximated as

_1
wj(t)+e

0=
=1 Bi- wy(t)+e

An optimal control problem

In the previous subsections, we proposed a workload
model and gave some examples of charactering different
load balance schemes. In this subsection, we are devoted
to formulating an optimal control problem for seeking
optimal CA policies.

First, we need to quantify the overall latency caused by a
given CA policy. In practice, as we assume that the cloud
is capability-infinite, the overall latency comes from three
parts: (a) the communication latency of cloud assistance,
(b) the communication latency of edge load balance, and
(c) the computation latency of edge computing.

First, suppose that at any time the communication delay
of transferring z computation tasks from the edge to
the cloud increases at the rate /(z). Then, given the ini-
tial workload distribution wp and the CA policy u(¢),
the expected total communication delay of transferring
tasks from the edge to the cloud during the time horizon
[0, T]is

T M
Dp(wo, u) = / Y huiywit)de. (7)
0 i=1

. i=1,..,M j=1,..,M 0<t<T.
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Second, as all computation forwarding is one-hop, the
total communication delay among ESs is determined by
the number of forwarded tasks. Let d;; be the average delay
of forwarding one task from server s; to s;. Note that the
task forwarding from s; to s; and that from s; to s; can not
be offset. Then, given the initial workload distribution wy
and the CA policy u(t), the expected total communica-
tion delay of forwarding tasks among ESs during the time
horizon [0, T is

Dc(wo,u) = /
0

Third, let g(z) denote the overall computation delay per
unit time when the workload of a server is z, where g is
an increasing function of z and g(0) = 0. Then, given the
initial workload distribution wp and the CA policy u(¢),
the expected total computation delay at the edge is

T M M

DY Agfyaidy de. (8)

i=1 j=1

T M
Dp(wo, u) = fo > gwi®)de. )
i=1

To summarize, given the initial workload distribution
wo, the overall latency caused by the CA policy u(t) is

J(wo, u) = Dg(wo, u) + Dc(wo, u) + Dp(wo, u)

T M M
= /0 [Zh(ui(t)wi(t))+Zg(Wi(t))
i=1

i=1 (10)

M M
+ ) Aufi®ei®)dy | de.

i=1 j=1

For convenience, let the utility function be

M M M
Uw(@),u®) = Y hui®wi®) + Y Y AgfyOai(t)d;

i=1 i=1 j=1

M
+ > gwie)).

i=1
(11)
The goal of this paper is to find an optimal dynamic CA
policy u €  with the constrain of the proposed work-
load model (1), so that the overall latency J is minimized.
Therefore, we can formulate an optimal control problem

as follows.

T
mig J(wo, u) = / Uw(t), u(t)) dt
ue 0
M
wi(t) = a;()fii(t) + ZA/zﬂi(t)aj(t) — ui(Hw;(t),
s.t. /=1

.M,

(12)
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For convenience, we refer to this optimal control problem
as the Optimal Cloud Assistance problem.

Solution

In the previous subsection, we formulated an continuous-
time optimal control problem (12) for seeking optimal CA
policies, so that the overall latency is minimized. In this
subsection, we now move on to solving the formulated
optimal control problem.

As the problem is time-continuous, Pontryagin Min-
imum Principle [21] provides an effective approach to
solving it. As an outline, Pontryagin Minimum Principle
gives a set of necessary conditions for optimal solutions
to an optimal control problem, which we refer to as the
optimality system. By solving the system, we are able to
find the most likely ones to be optimal controls. To find
controls that satisfy all the necessary conditions in the
optimality system, we apply an iterative algorithm known
as the Forward-Backward Sweep Method [22]. Finally, we
recommend the obtained optimal solution as an optimal

CA policy.

Optimality system

Let us discuss the necessary conditions of optimal solu-
tions. We begin by formulating the Hamiltonian function
for the collaborative offloading problem (12).

H(w,u,p) = U(w, u) +pTw'/

= Z h(uw;) + Z ZAuf,oz dij + Z 2wy

i=1 j=1

M M
+ Zpi —uiw; + oifii + ZA,’@}?’I'O{]' ,
=1 =1
(13)

where p = (p1,...,pm)T is the adjoint vector of the
Hamiltonian function.

Denote by u(t) € Q2 an optimal control, w(¢) the associ-
ated workload distribution, and p(t) the associated adjoint
function. Then, combining the statement in Pontryagin
Minimum Principle, we give the following theorem that
shows a set of necessary conditions to optimal controls.

Theorem 2 The optimal control u(t), optimal workload
distribution trajectory w(t), and adjoint function p(t) must
satisfy the following two conditions simultaneously.

1 The optimal control u(t) must meet the condition
that

ui(t) = arg min h(zw;) —piwiz, 0<t<T,i=12,...,M;
z€[0,1]

(14)
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2 The optimal workload distribution trajectory w(t)
evolves according to the workload model (1), and
adjoint function p(t) evolves according to

pi®) =[pi(t) =W (wi(&)w; ()] u;i(t) — &' (wi(£))
—Zp,(t)a,(t)ﬁo:)
j=1
- Z Z ka,(t)dk—(t)
1—1 k=1

—Zp,(t)ZAk,ak(t) (t)
j=1

0<t<T,i=12...,M,
p(T) =0.

(15)

Proof According to Pontryagin Minimum Principle, for
all admissible controls #/(t) € £, it follows that

Hw(®),u(®),p(t)) < Hw(t),u'(t),p(t)), Vt €[0, T].

(16)
In particular, let
M M
Q) =Y h(uwy) — Y piwit, (17)
i=1 i=1

which is refined from the Hamiltonian function by remov-
ing coefficients. Because all elements of  are independent
on each other, when ¢ is given it follows that

u;(t) = arg Zrer[x(i)r}] h(zw;) —piwiz, i=1,2,...,M.
(18)

Besides, by applying Pontryagin Minimum Principle
again, it follows that

wi(t) = +g—:(w(t),u(t),p(t)), 0<t<T,i=12...,M,
w(0) = wo,

pi(t) = u(t),p®), 0<t<T,i=12,...,M,
p(T) =0.

(19)

By calculation, we can get the above results. The proof
is completed. O

The above two conditions shape the characteristics of
optimal controls. By solving the formulated optimality
system, we are able to find all possible optimal solutions
to the optimal cloud assistance problem (12).
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Further properties of optimal solutions

In the previous subsection, we derived the optimality sys-
tem for seeking optimal solutions to the optimal cloud
assistance problem (12), in which a sub-problem (14)
needed to be solved.

Because the sub-problem is a bounded one-dimensional
optimization problem, we can solve the problem by
numerical searching. However, the searching can some-
times be time-consuming. By observing the sub-problem
(14), we find that if the function % is continuous, the con-
vexity and concavity of the function g(z) = h(zw;) —
piwiz are dependent on those of the function /. By using
this property, we can help accelerate solving the sub-
problem (14) in some cases. The conclusions are given
below.

As the first case, when the function / is convex, we can
get the following conclusion.

Theorem 3 If the function h is continuous and con-
vex, any local minimum of the function q is the global
minimum of q as well. Moreover, if the function h is
once continuously differentiable, it follows that: (a) if
Hwi®)wi®) — piOwit) =< 0, then u;t) = 1
(B) if WOwi(t) — pi®Owit) > 0, then ui(t) =
0; (c) otherwise, u;(t) is the solution of the equation
W (ui()ywi()wi(t) — pi(t)wi(t) = 0.

Proof As the function # is convex, the function g is con-
vex as well. As a result, it follows from the Convexity
Theory [50] that a local minimum of ¢ must be the global
minimum of g. Moreover, if g'(0) > 0,theng'(z) > 0,Vz €
[0,1], and therefore the minimum of g must be obtained
atz = 0.1f4'(0) < 0, then ¢'(z) < 0,Vz €[0, 1], and there-
fore the minimum of ¢ must be obtained at z = 1. The
proof is completed. O

Theorem 3 shows that if the function / is once contin-
uously differentiable and convex, the component of the
optimal control (i.e., #;(¢)) may be a binary policy. This
property can sometimes accelerate solving the optimal CA
policy when u;(¢) has a binary structure, because in that
case we have no need to use the one-dimensional numer-
ical searching method for solving the sub-problem (14).

As the second case, when the function / is concave, we
can get the following conclusion.

Theorem 4 If the function h is continuous and concave,
it follows that: (a) if h(0) < h(w;(t)) — pi(t)w;(t), then
u;(t) = 0; otherwise, u;(t) = 1.

Proof As the function 4 is concave, the function ¢ is
concave as well. As the result, the minimum of g must
be obtained at {0,1} according to the values of g(0)
and g(1). O
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Theorem 4 shows that if the function % is continuous
and concave, any component of the optimal control (i.e.,
u;(t)) must be a binary policy. This property will greatly
accelerate solving the optimal CA policy, because we can
simply compare the objective values of u;(f) = 0 and
u;(t) = 1 when solving the subproblem (14).

Iterative algorithm

In the previous subsections, we derived an optimality sys-
tem and discussed its properties. Now, we discuss how to
find such a control that satisfies such a system. Because
solving an optimality system essentially requires solving
a two-point boundary value problem [51], the forward-
backward sweep method (FBSM) [22] provides a practical
approach. Based on the FBSM, we provide a specific
algorithm (Algorithm 1), denoted by the optimal cloud
assistance algorithm. In addition, we should mention that
it is extremely difficult if not impossible to prove the con-
vergence of this algorithm. An illustration of this difficulty
can be found in [52]. Nevertheless, as reported in [53],
the FBSM can be quickly run and shows a good con-
vergence in general practical cases. Hence, we can still
adopt the optimal cloud assistance algorithm. Moreover,
it is difficult to find a previous theoretical analysis of the
complexity of the FBSM method. We also had difficulty
conducting such an analysis, and therefore we discuss
the practical complexity of the algorithm through our
numerical experiments.

Algorithm 1 Optimal cloud assistance algorithm

Input: the maximum iteration step K, the acceptable
error ¢, the initial control #©@ (¢).
Output: An optimal control u.
1. Letu(t) = u'® (¢). Solve w(t) with the dynamic system
(1). Let wO ) = w(p).
: Calculate J(u) with the Eq. (10) and denote it by J O,
:fork=0tok=K—1do
Let w(t) = w® (@), u(t) = u® (¢).
Solve p(t) with the dynamic system (15). Let
PP =p@).
Solve u(t) with the Eq. (14). Let u**+D (£) = u(¢).
Solve w(t) with the dynamic system (1). Let
wktD () = w(p).
8: Calculate /() with the Eq. (10) and denote it by
U+,
if [J*+D — J®O| < ¢ then
10: return ¢t (¢).
. return D ().

N

b

—
—

In lines 5 and 7 of Algorithm 1, we need to solve
two dynamic systems characterized by ordinary differen-
tial equations. To solve ordinary differential equations,
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it is possible to apply numerical methods such as the
Euler [54] and Runge—Kutta [55] methods. The Runge—
Kutta approach has been proven to be more accurate
but more time-consuming than the Euler method owing
to its complexity. Nevertheless, when the step length is
small enough, the difference between the two methods is
generally negligible.

The relations among the FBSM, the optimal cloud
assistance algorithm, the Euler method, and the Runge—
Kutta method are as follows: (a) the implementation
of the FBSM is dependent on methods such as the
Euler and Runge—Kutta approaches used for solving
ordinary differential equations, and (b) the optimal
cloud assistance algorithm is a practical application of
the FBSM.

Illustrative examples
In the previous section, we discussed how to solve the
optimal cloud assistance problem. In this section, we pro-
vide several numerical examples to illustrate the problem
and its optimal policies.

The remainder of this paper proceeds as follows. First,
we provide a description of the experimental environ-
ment. Second, we define some common experimental
settings used in our study, including the topological struc-
ture of the edge computing network and the workload
computation delay function g. We then introduce two
numerical examples and provide a brief analysis of the
results obtained. Next, we discuss some common phe-
nomena shown in the numerical examples. Finally, we
investigate the convergence and complexity of the practi-
cal algorithm.
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Experimental environment

First, let us start with a description of the experimen-
tal environment, including the hardware environment,
the use of parameter values, and the programming lan-
guage used in the experiments. All numerical experiments
described in this study were conducted on a PC machine
with an Intel i3 9100F CPU and 16 GB of RAM. In addi-
tion, the parameter values involved in all experiments
were determined according to our experience. In fact,
some parameters, such as the capacity of an edge server,
the increased traffic rate of a DDoS attack, and the com-
munication delays between two servers, are dependent
on specific scenarios, and thus it can be difficult to find
the standard values for them. For this reason, we set
the parameter values according to our experience, with
the purpose of investigating the influences of optimal
CA policies. Some existing studies also set the parame-
ter values according to experience. See [41, 43, 56] for
certain examples. Moreover, all numerical experiments
were implemented using the C++ and Java programming
languages.

Common setup

Let us move on to the topological structure of an edge
computing network. Considering that there are M = 10
ESs labeled by 1,2, ..., 10, as shown in Fig 3. Each server
has the same capacity of at most 10k tasks being processed
simultaneously. Then, suppose that the overall compu-
tation delay function of server workload is defined by

(20)

1
g(x) = gmax ° (1 - HeS(x—l())) ’

Fig. 3 Diagram of the topological structure of the distributed edge computing system
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where gmax is a constant coefficient. Figure 4 illustrates an
instance of function g(x). This function implies that the
overall computation delay is negligible when the workload
of a server is much less than its capacity, but will increase
sharply to a maximum of g, if the workload approaches
capacity.

In the following two examples, we assume that the com-
munication delay increases the function / as a linear
function. This assumption is reasonable. For example, if it
takes an average of 0.5 s to transmit one task from an edge
server to the cloud, it will take an average of 1 s to transmit
two tasks.

To validate the optimal policies obtained, we use the all-
one policy u™ (t) = 1 and the all-zero policy u®(t) = 0
as reference objects for the comparative experiments. The
all-zero policy is used to investigate the situation in which
there is no cloud assistance. The all-one policy is used
to investigate the situation in which every edge server
will always upload all pending tasks onto the cloud cen-
ter. For convenience, we denote by w© (%) the workload
distribution evolution function under the all-zero policy
and wV(¢) under the all-one policy. Moreover, we denote
the obtained optimal policy by u*(¢), and denote the
corresponding workload distribution evolution function
by w* ().

Examples, results, and explainations

Having discussed the common experimental settings, we
now introduce two numerical examples. To gain insight
into the influences of different load balance schemes, the
first example considers the RR scheme, and the second
considers the LC scheme.

= 60

S 50}

S 40t

9

= 30¢

aw

= 20}

% 10}

)

0 4 8 12 16 20
workload

Fig. 4 An instance of the computation delay function g(x), where
Jmax = 50
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Example 1 Consider the situation that the total time
horizon T = 5 minutes (m), the initial workload
w(0) = O tasks, the task increasing rate o(f) =
(0,0,0,5,0,0,10,0,0,0) thousand tasks per minute (kt/m),
the overall computation delay function g where gmax =
1000 seconds per minute (s/m), the task forwarding ratio
function fij = fR, the cloud assistance communication
delay function h(z) = z seconds per thousand tasks (s/kt),
and the task forwarding communication delay d;j = 0.3

seconds per thousand tasks (s/kt).

Results: The results of Example 1 are shown in Figs. 5, 6,
and 7. Figure 5 shows the optimal policy. From Fig. 5,
we can see that the related assistance rates of servers sg,
S5, 86, and s7; maintain the maximum during the entire
time horizon, whereas those of the other servers main-
tain the minimum. Moreover, as the function 4 has a
concave property, it follows from Theorem 4 that the opti-
mal policy has a binary structure. Figure 6 compares the
workload distribution evolution under the optimal policy,
the all-zero policy, and the all-one policy. Figure 7 com-
pares the accumulated overall latency under the optimal
policy, the all-zero policy, and the all-one policy. From
Figs. 6 and 7, we can see the influence of the different
policies:

e Under the all-zero policy, the workload of servers s1,
s2, and s3 increases linearly from zero to 4k tasks, the
workload of servers sg, s9, and sj¢ increases linearly
from zero to 7k tasks, and the workload of servers sg,
S5, 8¢, and s7 increases linearly from zero to more
than 10k tasks. As a result, the overall latency
increases slowly for a long time after the beginning,
but then increases dramatically to an unacceptable
value of nearly 1.5k s owing to the high workload of
servers sy, ss, S¢, and s7.

e Under the all-one policy, all servers enjoy low-level
workload over the entire time horizon. As a result,
the overall latency enjoys a low level of approximately
80 s.

e Under the optimal policy, the workload of servers sj,
s2, and s3 increases linearly to a low level of 4k tasks,
the workload of servers sy, s5, s¢, and s7 increases
slowly to a low level of 2k tasks, and the workload of
servers sg, s9, and s1o increases linearly to a middle
level of 7k tasks. As a result, the overall latency enjoys
a low level of nearly 50 s, which is 37.5% less than that
of the all-one policy, and even much less than that of
the all-zero policy.

From the above observations, we can conclude the fol-
lowing:

e If the all-zero policy is adopted, there will be a high
computation delay owing to the high server workload.
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Fig. 5 The optimal policy obtained from Example 1, where (a) to (j) show the elements u; (t), ux(t), . . ., u1o(t) in order

e Ifthe all-one policy is adopted, there will be a high
communication delay owing to the long distance
between the edge and cloud sides.

e If the optimal policy is adopted, there will be a
trade-off between the computation delay and
communication delay, and thus the overall latency
will be minimized.

Therefore, the obtained optimal policy is effective.
Reasons: When servers s4 and s; are under attack, the
workload of servers s4 and s7 will increases sharply and
reach an intolerable level. In addition, because servers ss
and s¢ are connected directly to both servers s4 and s7,
and because the RR workload balance scheme will spread
newly increased traffic among the connected servers, the
workload of servers s5 and s¢ will also quickly increase
(more slowly than those of servers s4 and s7) and reach an
intolerable level. The remaining servers (i.e., 1, s2, 53, S8,

S9, and s19) are only connected to one of the servers, s
or s7, and thus the workload of the remaining servers will
increase at a relatively low rate within a tolerable range.
To maintain the overall workload at a low level without
introducing excessive communication latency, the servers
S4, S5, S6, and sy need to upload pending tasks to the
cloud center at a high rate, whereas the remaining servers
only need to handle the tasks with their own capacity to
avoid unnecessary communication delays. If not, the EEC
ecosystem will suffer high communication delays or high
computation delays because the servers cannot cooperate
effectively and make the best trade-off.

Example 2 Consider the situation that the total time
horizon T = 5 minutes (m), the initial workload
w(0) = O tasks, the task increasing rate o(t) =
(0,0,0,5,0,0,10,0,0,0) thousand tasks per minute (kt/m),
the overall computation delay function g where gmax =

workload
workload
workload

workload
workload

workload
workload
workload

workload
workload

time time

Fig. 6 The workload distribution evolution obtained from Example 1, where (a) to (j) show the workload dynamics of servers s, 55, .

time

time time

..,S10 in order
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1000 seconds per minute (s/my), the task forwarding ratio
Sfunction fij = fl]LC where € = 0.001, the cloud assistance
communication delay function h(z) = z seconds per thou-
sand tasks (s/kt), and the task forwarding communication
delay d;; = 0.3 seconds per thousand tasks (s/kt).

Results: The results of Example 2 are shown in Figs. 8,
9, and 10. Figure 8 shows the optimal policy. From Fig. 8,
we can see that all related assistance rates maintain the
maximum for a period of time after the beginning, then
drop to and maintain the minimum before the termina-
tion time. Moreover, as function / has a concave property,
it follows from Theorem 4 that the optimal policy has
a binary structure. Figure 9 compares the workload dis-
tribution evolution under the optimal policy, the all-zero
policy, and the all-one policy. Figure 10 compares the
accumulated overall latency under the optimal policy, the
all-zero policy, and the all-one policy. From Figs. 9 and 10,
we can see the influence of different policies.

e Under the all-zero policy, the workload of servers sy,
2, and s3 increases linearly from zero to 5k tasks, the
workload of servers sg, s9, and s1¢ increases linearly
from zero to 8k tasks, and the workload of servers s4,
S5, 86, and s7 increases linearly from zero to more
than 9k tasks. As a result, the overall latency increases
slowly for a long time after the beginning, but then
increases dramatically to nearly 90 s owing to the
high workload of servers s, 5, S6, 57, S8, S9, and 1.

e Under the all-one policy, all servers enjoy low-level
workload over the entire time horizon. As a result,
the overall latency increases to nearly 80 s at the
terminated time owing to unnecessary cloud
assistance.

® Under the optimal policy, the workload of all servers
first increases slowly for a period of time after the
beginning and then increase linearly before the

termination time. At the termination time, the
workload of servers s, s3, and s3 enjoys a low level of
4.5k tasks, the workload of servers sg, sg, and s is at
a middle level of 7k tasks, and the workload of servers
S4, S5, 6, and s7 is at a high level of 8.5k. As a result,
the overall latency enjoys a low level of 35 s, which is
61.1% less than that under the all-zero policy, and
56.3% less than that under the all-one policy.

From the above observations, we can conclude the fol-
lowing:

e [f the all-zero policy is adopted, there will be a high
computation delay owing to the high server workload.

e Ifthe all-one policy is adopted, there will be a high
communication delay owing to the long distance
between the edge and cloud sides.

e If the optimal policy is adopted, there will be a
trade-off between the computation delay and
communication delay, and thus the overall latency
will be minimized.

Therefore, the obtained optimal policy is effective.
Reasons: When servers s, and sy are under attack,
the workload of the servers s; and s; will increases
sharply. In addition, because the servers s5 and s¢ are con-
nected directly to both servers s4 and s7, and because the
LC workload balance scheme will rapidly spread newly
increased traffic among connected servers, the workload
of the servers s5 and s¢ will also increase quickly. Although
the remaining servers (i.e., s1, 52, $3, $8, S9, S10) are only
connected to one of the servers s; and sy, the work-
load of the remaining servers will increase at a relatively
low but still high rate. Initially, to maintain the over-
all workload at a low level, all servers need to upload
pending tasks to the cloud center at a high rate. After a
while, all servers appear to know that if they continue to
keep the cloud assistance rate at a high level, too much
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communication latency will be introduced. All servers
also find that, despite not uploading any pending tasks to
the cloud center, they can still absorb all attacking traf-
fic using their remaining computation capacity. Although
doing this will arguably increase the computation latency,
the computation latency introduced is still lower than
the communication latency incurred by all servers while
maintaining high cloud assistance rates. To achieve the
best trade-off, all servers decide not to upload pending
tasks after a certain timestamp.

Discussions

In this subsection, we discuss the role of workload balance
in mitigating edge DDoS attacks, the effectiveness of the
EEC ecosystem in absorbing undetectable malicious traf-
fic, and the influence of the DDoS attack on the overall
latency.

From Figs. 6 and 9, we can see the role of workload
balance. The two aforementioned numerical examples
consider the same attack scenario, where only servers s4
and s7 are under attack. As shown in the experimental
parameters, there are 75k malicious tasks hitting servers
s4 and s; during an attack. When applying the all-zero
policy, no pending tasks will be uploaded onto the cloud,
and all tasks will be processed in the edge computing net-
work. Without a load balance, the servers s4 and s7 will
have to handle all 75k attacking tasks, and their work-
load will become extremely high. With a load balance, idle
edge servers can help handle a portion of the attack traffic.
Figure 6 shows that the 75k malicious tasks at s4 and s7 will
be non-uniformly dispatched among the edge computing
network, which is determined by the characteristics of the
RR scheme. Figure 9 shows that the 75k malicious tasks
at s4 and sy are relatively uniformly dispatched among
the edge computing network, which is determined by the
characteristics of the LC scheme. It seems that the LC
scheme is more efficient than the RR scheme because the
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LC scheme can make the edge computing network absorb
more traffic.

In addition, Figs. 6, 7, 9, and 10 show the effectiveness
of an EEC ecosystem in absorbing undetectable malicious
requests. When the edge computing network encounters
a DDoS attack and malicious requests are undetectable,
firewalls cannot filter out these abnormal requests, and
the attacking traffic directly hits the target of the edge
computing network. Without a cloud assistance of the
EEC ecosystem, the edge workload distribution will evolve
when applying the all-zero policy. The results show that
the edge computing network cannot afford high-volume
attack traffic. By contrast, with cloud assistance, resources
can be efficiently allocated, and hence the overall latency
can be dramatically reduced, as in the cases of applying
the optimal policy and the all-one policy.

Moreover, by observing the cases of applying the all-zero
policy, we can also see the influence of a DDoS attack.
Without cloud assistance, all the attack traffic will be pro-
cessed in the edge computing network, and the overall
latency will only come from the communication delay of
the load balance and the computation delays of the edge
servers. From Fig. 7, we can see that, by applying the
all-zero policy, the overall latency increases slowly before
time t = 4 but increases sharply after time ¢ = 4. This
phenomenon is illustrated by the all-zero case in Fig. 6.
We can see that before time ¢ = 4, the workload of all
edge servers is fewer than 8k tasks, and after time ¢t = 4,
the workload of servers s4, s5, s6, and s7 is more than 8k
tasks. The computation delay function plotted in Fig. 4
shows that when the workload of a server is more than
8k tasks, the computation delay increases rapidly. Hence,
the overall latency increases significantly after time ¢ = 4.
Figure 10 shows a similar phenomenon, where the over-
all latency increases linearly before time t = 4.5 but
increases exponentially after time ¢ = 4.5. By observing
the all-zero case in Fig. 9, we can see that before time
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t = 4.5, all workload is fewer than 8k tasks, and after time
t = 4.5, the workload of servers s4, s5, s6, and s7 is more
than 8k tasks. As a result, the computation delays of these
edge servers increase rapidly. Therefore, we can conclude
that, (a) initially, a DDoS attack will not seriously affect
the overall latency because at that time the edge comput-
ing network can still handle the attack traffic itself, and
(b) after a certain timestamp, the DDoS attack will sig-
nificantly increase the overall latency because some edge
servers in the network will have to suffer a high workload.

Algorithm convergence and complexity
Finally, let us investigate the algorithm convergence and
complexity.

In Fig. 11, we show the algorithm convergence for
each of the two numerical examples. From the results,
we can see that the optimal cloud assistance algorithm
(Algorithm 1) shows a good convergence. The objec-
tive functional (overall latency) can converge quickly with
only several iteration steps, which matches the discussion
in [53].

By observing the proposed optimal cloud assistance
algorithm (Algorithm 1), we found that the termination
time T is an essential factor in the algorithm complexity.
For each iteration step, we need to solve multiple ordinary
differential equations and a one-dimensional optimization
sub-problem. Given a method to solve the sub-problem,
the overall algorithm complexity is mainly dependent on
solving ordinary differential equations. If we set the same
step length of time when numerically solving ordinary dif-
ferential equations, the termination time 7 determines the
overall algorithm complexity.

Hence, to gain insight into the complexity of the algo-
rithm, we investigate how the practical time consumption
will increase as the termination time 7 increases. Numer-
ical experiments were conducted in the same hardware
environment. In Fig. 12, we show the practical time

consumption for each of the two numerical examples.
From the results, we can see that the proposed opti-
mal cloud assistance algorithm (Algorithm 1) runs
quickly and shows a linear complexity for the terminated
time T.

Conclusion

In this paper, the design of optimal cloud assistance
policies for the use of an end-edge-cloud ecosystem to
mitigate edge DDoS attacks is described. First, we pro-
pose an edge workload model that incorporates the edge
server workload distribution evolution under a given
cloud assistance policy. Based on the model, we quan-
tify the effectiveness of the policy based on the resulting
overall latency and formulate an optimal control prob-
lem for seeking optimal cloud assistance policies that can
minimize the overall latency. Then, following the Pontrya-
gin’s minimum principle, we provide solutions by deriving
an optimality system. To accelerate the problem solving,
we also discuss some properties of the optimal solutions.
Next, we introduce a numerical iterative algorithm based
on the forward-backward sweep method to seek poli-
cies that satisfy the derived optimality system. Finally, we
provide numerical examples to illustrate the optimal poli-
cies. Our work will assist in the development of a design
for using an end-edge-cloud ecosystem to mitigate edge
DDoS attacks.
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