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Abstract

The visibility estimation of the environment has great research and application value in the fields of production. To
estimate the visibility, we can utilize the camera to obtain some images as evidence. However, the camera only solves
the image acquisition problem, and the analysis of image visibility requires strong computational power. To realize
effective and efficient visibility estimation, we employ the cloud computing technique to realize high-through image
analysis. Our method combines cloud computing and image-based visibility estimation into a powerful and efficient
monitoring framework. To train an accurate model for visibility estimation, it is important to obtain the precise ground
truth for every image. However, the ground-truth visibility is difficult to be labeled due to its high ambiguity. To solve
this problem, we associate a label distribution to each image. The label distribution contains all the possible visibilities
with their probabilities. To learn from such annotation, we employ a CNN-RNN model for visibility-aware feature
extraction and a conditional probability neural network for distribution prediction. The estimation result can be
improved by fusing the predicting results of multiple images from different views. Our experiment shows that
labeling the image with visibility distribution can boost the learning performance, and our method can obtain the
visibility from the image efficiently.
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Introduction
Meteorological visibility is a crucial index for reporting
daily air quality, which has an important bearing on envi-
ronmental protection. Visibility has a wide range of appli-
cations such as traffic safety [1], industrial, agricultural
production, and smart city. Traditionally, visibility can be
estimated by some specialized equipment, such as a tran-
silluminator or foreword scattering sensor [2]. However,
since the equipment is usually expensive and inconve-
nient, we can place the equipment at only a few weather
stations to detect the visibility of some fixed scenes. This
cannot satisfy the requirement of multiple monitoring
applications. To realize ubiquitous and intelligent moni-
toring as done in [3], we can utilize abounding and budget
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cameras as an alternative. By analyzing the image taken by
these cameras, we can obtain direct evidence for visibility
estimation effectively and efficiently.
The image-based visibility estimation constructs the

mapping between the image representation and the visi-
bility value. At present, many image-based visibility anal-
ysis methods are proposed [4–6], and they focus on cre-
ating some complex models to extract the visibility-aware
cues from the image. The recent trend is geared towards
using deep learning [7, 8] to obtain the visibility-aware
feature. These methods assume the computing power is
enough, and the actual deployment problem is not con-
sidered. The normal cameras cannot realize the image
analysis processing due to their limited computational
power. It is impractical to assign an external computer for
every camera, since even powerful CPUs cannot handle
deep learning tasks efficiently. Usually, a graphics process-
ing unit (GPU) is required but its cost is much higher.
Another way is to use some programmable cameras with
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the embedded computing device. However, a typical deep
model is difficult to be deployed on such devices. Due
to its limited resource, the model is required to be com-
pressed according to its storage space [9, 10], which might
reduce the performance. Meanwhile, the inference speed
is slow, since its computational capacity is much worse
than the external devices having dedicated graphics cards.
Moreover, the deployed model is hard to be updated since
the model is stored in the offline device. This brings a high
cost to the operation and maintenance of the visibility
monitoring system when the model is upgraded. There-
fore, it demands an efficient and effective way to estimate
the visibility of the image.
To realize the real-time image-based visibility estima-

tion, an effective way is cloud computing. Cloud com-
puting is a distributed computing paradigm for sharing
configurable computing resources. By such a technique,
data partitioning and sampling [11] are utilized to improve
the processing of big data. At the same time, the images
generated from multiple cameras can be analyzed with
high parallelism and programmable flexibility through the
distributed architecture [12] and fast data exchange [13].
Recently, cloud computing has been used in video surveil-
lance for traffic services [14], which improves the response
efficiency of the services. Inspired by these methods, our
method integrates cloud computing into the image-based
visibility monitoring process. This alleviates the lack of
computing power in the visibility estimation applications.
However, it is difficult to deploy an effective visibility

estimation model in the cloud environment. Currently,
most visibility estimation methods use deep learning to
construct the visibility prediction model [7, 8]. Since these
methods formulate the visibility estimation as a regression
problem, we should label the visibilities of all the train-
ing images accurately. However, it is difficult to obtain
the precise ground truth of image visibility. The human
specification of absolute visibility from a single image is
unreliable [15]. The specialized equipment cannot gen-
erate accurate visibility labels either due to deployment
variations and environmental influences. The annotation

problem brings many challenges to the construction of a
cloud computing system for visibility estimation.
To overcome the problem, one way is to use image pairs

labeled by ranking their visibilities as the supervision [16].
Though it is much easier to achieve the relative visibil-
ity annotation given a pair of images, absolute visibility
cannot be derived directly from the ranking informa-
tion. Besides, the annotation burden of relative visibility is
increased significantly since there are lots of image pairs
to be annotated.
Inspired by a novel machine learning paradigm called

Label Distribution Learning (LDL) [17], we propose to
label an image by a mixture of visibility values with dif-
ferent intensities, which is described as a distribution.
Since such label distribution contains several possible vis-
ibility values, the problem of inaccurate annotation is
overcome. To obtain such a label, we transform an abso-
lute visibility label provided by humans or equipment into
a visibility distribution. The transformation is based on
the following observation: the images with close visibil-
ity have a high degree of similarity. Accordingly, we adopt
one-dimensional Gauss distribution for visibility annota-
tion, where the absolute visibility label is the mean of
the distribution (as shown in Fig. 1). Thus, the abso-
lute visibility has the highest intensity, while the relevant
degree of other visibilities is inversely proportional to their
distances to the absolute label.
Compared with previous labeling types, the label distri-

bution has two superiorities for visibility estimation. On
the one hand, the label distribution considers both the
ambiguity of the visibility label and the convenience of
the visibility prediction. The label distribution improves
the robustness of model learning with the uncertain label.
Meanwhile, absolute visibility can be obtained directly by
searching the highest intensity from distribution. On the
other hand, the label distribution can provide more infor-
mative supervision. Since every training image labeled by
particular visibility is relative to the other closer visibil-
ity, it can affect the learned model of adjacent visibilities.
In other words, the training images for particular visibility

Fig. 1 Our method labels the image visibility as a probability distribution
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are substantially increased without extra image collection
and annotation.
In this paper, a novel visibility estimation method using

deep LDL in a cloud environment is proposed. The
method employs cloud computing to process the visibil-
ity image data, which satisfies the real-time requirements
of meteorological monitoring applications. To obtain the
visibility estimation model for the clouding center, we
use deep label distribution to train the deep neural net-
work. Given a set of images labeled by absolute visibility,
we first transform the absolute label into a label distri-
bution. Then, we integrate LDL, CNN, and RNN into
a unified framework for visibility model learning. The
LDL module focuses on the label level and employs the
label distribution to remove the label ambiguity. The CNN
module focuses on the global feature level and is responsi-
ble for learning the overall visibility from the whole image.
The RNN module focuses on the local region level and
searches the farthest region to give richer information
for visibility estimation. By integrating the three levels of
information including the label, global feature, and local
region, we can construct a more effective image repre-
sentation to estimate the visibility. The learned model
can generate the distribution of all the possible visibilities
given a test image. We finally use the visibility with the
highest probability as the predicted visibility. To improve
the robustness of the automatic estimation, the Dempster-
Shafer theory is used to fuse the visibility estimation
results of multiple images obtained from different views at
the same location and time.
The contributions of this study are summarized as fol-

lows: 1) We propose to adopt cloud computing to deal
with image-based visibility estimation, which improves
real-time performance. 2)We propose to use the label dis-
tribution as the supervision for visibility estimation, which
can not only overcome the inaccurate annotation prob-
lem, but also boost the learning performance without the
increase of training examples. 3)We utilize the Dempster-
Shafer theory to fuse multiple predictions of the images
from different views, which promotes the stability and
robustness of the algorithm.

Related work
This work relates to several research areas. In this section,
we briefly review the existing work on image-based visi-
bility estimation, cloud computing and evidence theory.

Image-based visibility estimation
The early image-based visibility estimation methods use
some hand-crafted features to achieve visibility, such as
contrast, image inflection point, or dark channel. For
example, Busch et al. [18] employ wavelet transform to
extract the contrast information of the image edge for vis-
ibility estimation. Jourlin et al. [19] select some critical

points to construct a scene depth map with the stereo
vision method. Bronte et al. [20] measure the visibility
in poor weather conditions by calculating the vanishing
point of the horizon as the farthest visible pixel. Graves et
al. [21] train a log-linear model by combining local con-
trast features and dark channel prior. Xiang et al. [22]
integrate average Sobel gradient operator and dark chan-
nel theory to detect the daytime visibility level. These
methods focus on low-level image processing techniques,
and cannot lead to the practical and stable estimation
result across different scenes.
To improve the performance of visibility estimation,

some researchers create some physic probabilistic mod-
els by meteorological law. Babari et al. [4, 5] employ a
non-linear regression model called Koschmieder’s theory,
which describes the relationship between the contrast dis-
tribution and visibility. The measurement of the image
contrast can be improved further by the extinction coef-
ficient [6]. However, the performance of these physics
models is affected by weather conditions, illumination,
and scene variations. It is extremely difficult to hard-
code the enormous variability of these complex factors in
general.
To improve the adaptiveness, a more sophisticated way

is to extract the visibility prediction model from data by
deep learning. Li et al. [7] employ a generalized regression
neural network (GRNN) and a pre-trained CNN model
for visibility estimation. Giyenko et al. [23] detect the vis-
ibility range of the weather images by building Shallow
CNN neural network with fewer layers. Palvanov et al. [8]
use three streams of deep integrated convolutional neu-
ral networks to extract the visibility-aware feature from
spectrally filtered images, FFT-filtered images, and RGB
images. Wang et al. [24] use a multimodal CNN archi-
tecture to learn the visibility-aware features by combining
the two sensor modalities. Li et al. [25] propose a transfer
learning method based on the feature fusion for visibil-
ity estimation. Lo et al.[26] further introduce PSO feature
selection into the transfer learning method to improve the
performance. These methods all treat the visibility esti-
mation problem as a regression model, which is suffered
from the label ambiguity challenges. To solve it, You et al.
[16] propose a relative CNN-RNN model to learn relative
atmospheric visibility from images. They ask the annota-
tors to rank two given images based on the visibility by
the crowdsourcing technique [27]. Though the label ambi-
guity is eliminated by such supervision, the annotation
cost is increased significantly. Our method is inspired by
these approaches, but we propose to use label distribu-
tion as the supervision. This provides a cheap and effec-
tive way to resolve the label ambiguity issue in visibility
estimation.
Moreover, meteorological visibility is also temporal cor-

related, which can be predicted by some time-aware
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dynamic analysis techniques [28, 29]. For example, Wu
et al. [30] utilize the environmental state information to
achieve the visibility prediction results in the airport. In
contrast, our method does not rely on temporal infor-
mation and estimates the visibility from the real-time
images.

Cloud computing
Cloud computing is a new computing paradigm, which
can process billions of data in seconds and provide
strong network service [1, 14]. It can effectively reduce
offloading and maximize the system utility by balancing
resource allocation [31, 32]. With the rapid development
of cloud computing, more user records are generated
and stored in the data center for other applications [33].
Cloud computing has been widely used in many appli-
cations with high load and high concurrencies, such as
smart city [34], intelligent manufacturing [35], and inter-
net of thing [36]. Based on its advantages for large-
scale data processing, we integrate cloud computing and
image processing into a whole visibility monitoring frame-
work with a huge network of cameras, which improves
the real-time and accurate performance of visibility
estimation.

Information fusion
Since a single sensor system is unstable, it is difficult
to meet the demands of the complex environment. To
improve the robustness of the system, information fusion
is used to combine the prediction results from multiple
sensor devices [37]. Such a technique can make mul-
tiple sensors cooperate with each other and produce
more accurate results by synthesizing the complementary
information [38, 39]. There are many information fusion
techniques, such as Dempster-Shafer theory [40], fuzzy
logic [41] and rough set theory [42]. Among these tech-
niques, we choose Dempster-Shafer (D-S) theory for its
high fusion accuracy and flexibility. By the confidence
function and the likelihood function, it can calculate the
uncertainty interval to describe the trust distribution of
different information. Currently, D-S theory has been
widely used in event probability prediction [43], image tar-
get recognition [44] and case decision analysis [45]. Our
method uses D-S theory to combine the predictions of
multiple images from different views. When the visibility
information derived from different images is inconsis-
tent, D-S theory can extract the homogenous information
through common credibility, This ensures that the accu-
racy of the fused result is better than the original single
result. To the best of our knowledge, this is the first time
to introduce the D-S theory into image-based visibility
estimation.

Method
Overview
We propose a visibility estimation method based on deep
LDL in a cloud environment. The overall idea is that
we combine cloud computing and image process to esti-
mate visibility efficiently. With cloud computing, we can
make the front-end monitoring device thinner. The cam-
era is only responsible for capturing and compressing
the images. Then, the high-performance network is uti-
lized to transmit the image data from the camera to
the cloud platform. Thus, the complex image analysis
task can be performed quickly and remotely in the cloud
with high performance computing cluster. The results can
be feedbacked to the monitoring center. This alleviates
the lack of front-end computing power in the visibil-
ity estimation application. Our developed method saves
the required resources by utilizing high-performance par-
allel computing of graphics processing units (GPU) in
cloud computing services. With the GPU cluster, we can
adopt larger and deeper models to improve the accu-
racy of visibility estimation without sacrificing efficiency.
Meanwhile, another advantage of cloud computing is
the convenience of system maintenance. Compared with
front-end computing in the local PC or programmable
cameras, the deep model is much easier to be upgraded,
which helps to ensure the stability and consistency of the
system.
Figure 2 illustrates the whole pipeline of our method.

The camera nodes collect the images and transmit them
to the cloud data center. These cameras can adjust
their angles continuously to obtain different images.
Since these images are generated at the same loca-
tion and time, they have nearly similar visibility. These
images are analyzed by the pre-trained deep model
stored in the data center. The visibility at the loca-
tion of the camera node is finally achieved by fusing
all the predictions of multiple images from different
views.
To train the deep model, we label the image visibil-

ity with a distribution vector, and integrate deep learning
and LDL for visibility estimation. The training input is a
training image set S, and every image x ∈ S is labeled
by an absolute visibility y. We also annotate the farthest
region of every image by the coordinates of the bound-
ing box b. The training output is a visibility estimation
model, which includes a deep CNN-RNN module and
an LDL module. Overall, the training session contains
three parts: label transformation, feature learning, and
distribution learning. In the following, we first describe
each part of the training stage in detail, and then intro-
duce the prediction fusion method when estimating the
visibility.
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Fig. 2 The overall process of our method

Label transformation
The goal of label transformation is to generate a label dis-
tribution for every training image x. Given an image x,
let the vector D = {dy1x , dy2x , ..., dycx } denote its label dis-
tribution, where, Y = {y1, y2, ..., yc} is the label space, c is
the size of the label space, dyix ∈[ 0, 1] is called description
degree of the image x, which means the probability of its
visibility being yi. Due to the complexity of the label distri-
bution, fully manual annotation is impractical. Thus, we
prefer an automatic way to generate the distribution from
an absolute visibility label y.
For visibility estimation, the label space is intrinsically

continuous. To ease the learning, we quantize the continu-
ous label space into a discrete space Y with equal step size
�y. In our method, we set the label space Y =[ 1km : �y :
12km] (MATLAB notation) and the step size�y = 0.1km.
Thus, the label distribution D of every image x is a 111D
vector, which satisfies

∑
i d

yi
x = 1.

To generate the label distribution D, we first determine
the distribution type according to the characteristic of the
visibility estimation problem. Given an image x labeled by
an absolute visibility y, it is reasonable to make the corre-
sponding description degree dyx ∈ D highest in the final
distribution D. Meanwhile, since the neighbor visibility
looks similar in appearance, we can increase the descrip-
tion degrees which are adjacent to the label y. Naturally,
the description degree dyix should be gradually reduced
when the visibility yi is far away from the label y. Based
on this observation, we choose the probability density
function of one-dimensional Gauss distribution for label
transformation.
The one-dimensional Gauss distribution is a type of

continuous probability distribution for a real-valued ran-
dom variable. Its general form is shaped as:

f (yi) = 1√
2πσ

exp
(

− (yi − ȳ)2

2σ 2

)

(1)

where, the parameter ȳ is themean of the distribution, and
σ is its standard deviation.

According to Eq. 1, we transform the absolute label y
into a probability vector. Since we expect the description
degree dyx ∈ D is the highest, we set the parameter ȳ as the
absolute label y. The parameter σ is a hyper-parameter,
which is optimized by a simple grid searching described
in the experiment section. After determining these two
parameters, we can compute the probability density
when the random variable equals yi as its description
degree dyix . In other words, we compute the description
degree dyix by

dyix = f (yi) (2)

Such label distribution D is a discrete distribution by
a dense sampling of one-dimensional Gauss distribution.
The discretion process makes the sum of the vector D not
equal to 1, which achieves an illegal probability density
function. To force

∑
i d

yi
x = 1, this vector is numerically

normalized to generate the expected label distribution D.
The distribution D is used for the following learning pro-
cess, which makes the distribution D′ derived from the
deep network consistent with the distribution D.

Feature learning
To simulate the procedure of humans judging the visibil-
ity, we follow the relative CNN-RNN method [16]. Since
the method uses a ranked image pair to train the deep
network, its network architecture contains two similar
CNN-RNN branches. Instead, our method uses only one
CNN-RNN model to extract the visibility-aware feature,
which is more efficient.
Specially, the CNN-RNN model imitates the coarse-to-

fine way to detect the farthest target from the image. The
CNN module learns the overall visibility from the global
image, while the RNN model simulates the region search
to realize the coarse-to-fine attention shift, as shown in
Fig. 3. There are also other advanced methods for the
region searching, such as temporal CNN [46], LSTM [47]
and GRU [48]. The temporal CNN needs to maintain
the sequence into the memory, while LSTM and GRU
contain more parameters than RNN. Thus, we choose
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Fig. 3 The RNN module detects the farthest target from the image

RNN for its fewer parameters and higher efficiency. In
the experiment, we find RNN to work well in prac-
tice. By combining the CNN and RNN model, the final
global feature can be more sensitive to the farthest region
in the image, which is an important cue for visibility
estimation.
Figure 4 illustrates the architecture of our method. For

the CNN module, we follow the design of AlexNet [49]
for global feature extraction. Our CNN module contains
7 layers, which includes 5 convolution layers and 2 fully
connected layers.
For the RNN module, we construct K layers for each of

the first six CNN layers, and 1 layer for the last CNN layer.
Totally, there are 6K + 1 states in a sequential manner
in the RNN module. Every state predicts a bounding box
rt , and the list of the bounding boxes shows the search-
ing process of the farthest region, namely, from the whole
image to the farthest region.
At each recursive step, the RNN module first crops

the image x into a sub-region cxt based on the predicted
bounding box rt−1, which is the location result of the pre-
vious state. Then, the internal state ht is updated by the
core network gh according to the sub-region cxt and the
historical state ht−1. The generated state ht encodes the
knowledge of searching the farthest region. Finally, we use
the internal state ht to predict the next bounding box rt by
the location network as rt = gr(ht), which is a two-layered
network. To exchange the information between CNN and
RNN, some shortcuts connections are added between the
(7− i)th (i = 0, ..., 6) layer of CNN and the (Ki+1)th state
of RNN.
To train the RNN module, we need to indicate the

ground-truth bounding box of every state. To this end, we
assume that the list of the bounding boxes is evenly dis-
tributed. Accordingly, given the annotated bounding box
b of the farthest region, we generate the whole ground-
truth list of the bounding boxes B = {b1, b2, ..., b6K+1} by
average sampling. During the training phase, we expect to
minimize the divergence between the predicted bounding
boxes {r1, r2, ..., r6K+1} and the ground truth. Accordingly,
we define the objective function of RNN as a location L2
norm loss:

Ll =
6K+1∑

t=1
‖bt − rt‖2 (3)

To integrate the information of CNN and RNN, the
output of the CNN module and the last state h6K+1 of
the RNN module are concatenated into a global vector
representation f for visibility estimation.

Distribution learning
To utilize the label distribution D, we integrate it into the
network architecture. Naturally, we can use several fully
connected layers with a softmax layer to turn the feature
f into a distribution directly. However, this yields lots of
weights between the feature layer and the output layer,
which makes it difficult to obtain the optimal solution.
Thus, we follow the design of the conditional probability
neural network (CPNN) [50].
As shown in Fig. 4, CPNN contains three fully con-

nected layers. The input of CPNN contains the feature
f and a discrete visibility label y. The output of CPNN
is a single value p(y|f ) as the conditional probability. To
realize the training, the Kullback-Leibler divergence is
employed to measure the difference between the esti-
mated distribution and the ground-truth distribution D:

Ld =
∑

j
dyjx ln

dyjx
p(yi|f ) (4)

Finally, we define the entire objective function as the
sum of the location loss and the distribution loss:

L = Ll + Ld (5)

Given the entire objective function, we simultaneously
optimize the CNN-RNN module and the CPNN mod-
ule through back-propagation with stochastic gradient
descent [51]. To accelerate the training, we use the CNN
pre-trained by ImageNet. According to the learnedmodel,
the predicted visibility could be the one with the maxi-
mum description degree.

Prediction fusion
Due to the diverse image quality and the inherent fea-
ture noise, the system cannot estimate the visibility from a
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Fig. 4 Our architecture contains three modules: CNN module, RNN module, and CPNN layer

single image reliably. Currently, most cameras can adjust
their internal parameters to obtain multiple images from
different views simultaneously. Since these images are
captured at the same location and time, they intrinsically
have the same visibility. Based on this observation, we
utilize the complementary information between multiple
images from different views to enhance the accuracy of
the visibility estimation.
To this end, we employ Dempster-Shafer theory to

fuse multiple predictions derived from different images.
There are two steps in Dempster-Shafer theory. First, a
set of related propositions are created with their sub-
jective probabilities as the degrees of belief. For visi-
bility estimation, we can create a proposition for every
image captured from different views. The proposition
is shaped as: the visibility of the image is y. We can
also take the output of CPNN as its degree of belief.

Second, the degrees of belief are combined based on
mass likelihood and belief function, as shown in Fig. 5.
The DS rule of combination corresponds to the normal-
ized conjunction of mass functions. Based on Shafer’s
description, given two independent and distinct pieces
of evidence on the same frame of discernment, their
combination is the conjunctive consensus between them.
When using the DS rule for multi-view visibility esti-
mation, we can obtain the belief function of every
proposition derived from every image. The belief func-
tion considers both the relevance and conflict between
different views, which makes the fusion result more
reliable.
The core of D-S theory is the construction of the propo-

sition set. To realize it for multi-view prediction fusion,
a direct way is to create c mutually exclusive proposi-
tions for every single visibility, where c is the size of
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Fig. 5 The process of D-S theory

the label space Y. However, we found such propositions
cannot always improve the performance, since the qual-
ity of prediction fusion is affected by the possible strong
conflict between different views [52].
To solve it, we design several fuzzy propositions to

reduce the evidence conflict. The fuzzy proposition is cor-
responding to a subset of the visibility label space, instead
of single visibility. To avoid combinatorial explosion, we
utilize the continuity of the label space to remove some
subsets with low confidence. First, the subset should be
a continuous sequence of visibility labels. Second, the
length of the sequence should be equal to 3. The limita-
tion of the length is selected empirically. If the parameter
is too long, the fuzzy proposition contains very little infor-
mation. Thus, we set it as 3. Accordingly, our proposition
set A contains two types of propositions. The first type
of proposition is unambiguous, which is indicated by Aj.
The proposition Aj means that the visibility of multi-
view images is yj ∈ Y . The second type is fuzzy, i.e.,
the visibility of the image is one element of a continuous
sequence. The fuzzy proposition is denoted by Ajk (j <

k ≤ j + 2), which means that the corresponding sequence
is {yj, ..., yk}. Obviously, we have Ai ⊂ Ajk if j ≤ i ≤ k. To
simplify the notation, we denote Ajk as Aj in the following
session.
To support the fusion of such a proposition set, we

first modify the input label of our CPNN to obtain the
confidences of all the propositions. The original net-
work can only take every single visibility yj as the input.
We expand the input label set by adding the continu-
ous sequence that appears in the fuzzy proposition. To
realize the training of the CPNN, we measure the ground-
truth description degree dyijx by the sum of all the related
probabilities:

dyjkx =
k∑

i=j
dyix (6)

The deep network is re-trained by the extending input
label set. Based on the deep network, we can obtain the
normalized confidences of all the propositions given an
image.
Then, we use Dempster’s rule to combine the pieces of

evidence derived from multiple images. Given the multi-
view image set V = {View1, ...,Viewn}, our deep network
generates the probabilities of all the propositions for each
image Viewi. We denote mi(Aj) as the confidence of the
image Viewi supporting the proposition Aj. Thus, we can
use mi(Aj) to define the mass function, which is the basic
probability assignment function. Based on the mass func-
tion, we can compute the belief function Bel(Aj). The
belief function describes the confidence of all the images
supporting the visibility estimation proposition, which is
computed by the following rule:

Bel(Aj) = 1
1 − K

∑

⋂n
i Aki=Aj

n∏

i
mi(Aki) (7)

where, K is the normalization constant as:

K =
∑

⋂n
i Aki 	=∅

n∏

i
mi(Aki) (8)

Finally, we choose the proposition with the highest
belief as the result of prediction fusion. If this proposition
Ajk is fuzzy, we then choose its single subset Ai (j ≤ i ≤ k)
with the highest plausibility as the fusion result.
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Fig. 6 Some images in RMID. Every line of images are captured at the same location and time with different views

Experiments
Implementation detail
For theCNNpart, it takes a long time to converge if random
initialization is used.Accordingly, we use the ImageNet data-
set to pre-train the model due to the similarity of basic cha-
racteristics between ImageNet and our dataset. The pre-
training process can greatly accelerate the convergence.
For the RNN part, we pre-train the model without con-
nection to the CNN layer. To realize the training, Tensor-
flow is used to implement the models and comparative
experiments. The whole model is optimized by Adam
optimizer. During training, the batch size is 64, the learn-
ing rate is 0.00001, and the epoch is 50. All the experi-
ments are conducted on NVIDIA GeForce RTX 2080Ti.

Experimental setup
The method is evaluated on 3 image sets: FROSI (Foggy
Road Sign Images) [53], FRIDA (Foggy Road Image
Dataset) [54] and RMID (Real Multiview Images Dataset).
FROSI and FRIDA are two synthetic datasets. FROSI
contains images of simple road scenes and traffic signs,
while FRIDA contains images of the urban road scenes
under different weather conditions. The original image is
blurred by adding the synthetic frog effects. And every
image generates four synthetic images. 70% images of the
two datasets are selected as the training set and the other
images are used for testing.

Table 1 Three benchmark imagesets used in our experiment

Dataset Blurry Sub-blurry Sub-clear Clear

FROSI 41.8% 22.1% 10.9% 25.2%

FRIDA 11.4% 44.5% 33.7% 10.4%

RMID 10.8% 23.4% 34.0% 31.8%

RMID is a real multi-view image dataset collected by
ourselves, which includes 3000 images. These images are
grouped according to their capturing time and place.
Every group of images only has different camera param-
eters. The visibility is labeled based on the report of
the weather stations, ranging from 1km to 12km. The
precision of the visibility is 0.1km. Thus, there are 111 vis-
ibility levels. Due to the rare situation of heavy fog, the
distribution of visibility is imbalanced. Figure 6 shows sev-
eral images in RMID.When using RMID to train our deep
model, we randomly select 100 images for every visibility
level to create a uniform distributed training set, and the
other images form the test set.
We divide the three image sets by equally classifying

the visibility into four grades: blurry, sub-blurry, sub-clear,
and clear. As shown in Table 1, the distributions of the
three image sets are very different.
To compare the performance of different methods, we

use the mean absolute error (MAE) as the evaluation
index, which is defined as:

Table 2 Results of different label distribution

Distribution FROSI RMID

Average Distribution 14.5% 19.3%

Triangle Distribution 15.0% 17.9%

Gauss Distribution (σ 2=2.5) 14.2% 17.2%

Gauss Distribution (σ 2=2.0) 13.6% 16.8%

Gauss Distribution (σ 2=1.5) 12.1% 15.8%

Gauss Distribution (σ 2=1.0) 13.3% 16.1%

Gauss Distribution (σ 2=0.5) 15.7% 20.4%

The best performance indicators are marked as bold
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Fig. 7 The different label distributions: average distribution and triangle distribution

MAE = 1
n

n∑

i=1

|yi − ŷi|
yi

(9)

where, yi and ŷi are the ground truth and the predicted vis-
ibility of the ith testing image respectively, n is the number
of the testing images.

Distribution analysis
We evaluate our choice of Gauss distribution and the
parameter of the standard deviation σ . To study the
influence of the distribution type, we compare the per-
formance of Gauss distribution, average distribution, and
triangle distribution. Figure 7 shows the shapes of the
other two distributions. To search the optimal standard
deviation σ , we run our method with 5 different values.
Figure 8 shows the shapes of the gauss distribution with
different σ . To simplify the comparison, we remove the
prediction fusion and measure the accuracy of visibility
estimation for a single image.

As shown in Table 2, different distributions have a dif-
ferent impact on the prediction results. From the table, we
can see that the optimal distribution is the Gauss distri-
bution. Moreover, the value of the standard deviation has
a significant effect on the final performance. As shown in
Fig. 8, if the value is too large, the Gauss distribution is
very similar to the average distribution. If the value is too
small, the Gauss distribution is over concentrated, which
degenerates into the absolute label. Accordingly, we unify
σ 2 = 1.5 in the following experiment since it leads to the
best performance.

CNN-RNN analysis
We then explore the influence of the hyper-parameter K
in the RNN module. This parameter controls the infor-
mation exchange between CNN and RNN. To select the
optimal value, we run our methods on the set FROSI with
three different values. The experimental setting is without
the prediction fusion stage, which is as the same as the
distribution analysis experiment. The results are shown

Fig. 8 Different σ for gauss distribution
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Table 3 Results of different parameter K

K=2 K=3 K=4

16.7% 12.1% 15.1%

The best performance indicator is marked as bold

in Table 3. From the table, we can see that the effect of
this parameter is relatively stable. In the following experi-
ments, we set the parameter K as 3 since the performance
is best.

Comparison with state-of-the-art methods
Figure 9 shows the test results of some images in the
dataset, including the real value and prediction value. It
is found that our result is very close to the ground truth.
We also measure the timing of each step for processing
the images in the cloud environment. During the training
session, it takes 257ms average to update the parameters
of the deep model for one image. To achieve model learn-
ing, it takes about 3 hours to train 2000 images. During
the inference session, it costs 62ms average to estimate
the visibility of every single image, and 55ms for predic-
tion fusion. We also measure the network transfer time
with the bandwidth 1000 Mbps. The size of every image
is about 900 kb on average, thus the transfer delay is
about 7ms. As our prediction fusion takes 4 images as
input, the whole inference time with cloud computing is
62ms + 55ms + 4 × 7ms = 145ms (the 4 images are
estimated in parallel through the deep network). This sat-
isfies the requirement of the real-timemonitoring applica-
tion. We also try to deploy the model in Huawei Atlas 200.
After the test, it takes about 214ms average to estimate the
visibility of one image, and 275ms for prediction fusion.
Thus, the whole inference time is 214ms+275ms = 489ms
when using the programmable camera, which is 3.4 times
that of cloud computing. This shows that cloud computing

is a superior choice in the application scenarios of visibility
estimation.
Table 4 reports the comparisons of our method and pre-

vious state-of-the-art methods on three datasets from the
view of prediction accuracy. According to the results in
Table 4, ourmethod achieves the best results. By analyzing
the estimation results, we can see that label distribution is
more effective than the absolute label or the ranking label
when the network architecture is the same.

Ablation study
To prove the effectiveness of different designs, we com-
pare our method with all components and alternatives
with one of our choices disabled. We run the following
variants:
No CNN - We remove the CNN module from the

network.
No RNN - We remove the RNN module from the

network.
No LDL - We use the absolute label instead of the

distribution and turn it into a regression problem.
No Fusion - We use only one image for visibility esti-

mation instead of fusing the predictions from differet
views.
We run our method and the variants on the three image

sets. As shown in Table 4, we can see that our method
achieves a significant performance boost compared with
other variants. Among all the choices, the CNN module
plays the most important role. The LDL, fusion, and RNN
modules can also boost performance significantly. This
demonstrates our contributions for visibility estimation.
We also compare different prediction fusion methods,

such as average fusion, voting fusion, and max fusion.
The average fusion method takes the average score of
multi-view images as the output. The max fusion method
chooses the visibility with the maximum score across the

Fig. 9 The estimation results of some images in RMID
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Table 4 Comparisons with state-of-the-arts and ablation study

Methods Label type FROSI FRIDA RMID

VGG16 [55] absolute 33.0% 26.4% 39.8%

ResNet [56] absolute 26.3% 25.7% 30.2%

CNN+GRNN [7] absolute 23.8% 29.1% 35.6%

DHCNN [57] absolute 28.6% 29.2% 41.9%

VisNet [8] absolute 21.4% 22.9% 27.5%

Relative CNN-RNN [16] ranking 14.5% 13.8% 18.3%

Ours (without CNN) distribution 23.3% 30.0% 33.6%

Ours (without RNN) distribution 14.6% 16.7% 18.1%

Ours (without LDL) absolute 14.0% 15.1% 16.3%

Ours (without Fusion) distribution 12.1% 13.7% 15.8%

Ours (average fusion) distribution 11.3% 11.4% 13.9%

Ours (voting fusion) distribution 11.5% 12.0% 13.3%

Ours (max fusion) distribution 10.8% 9.9% 14.7%

Ours distribution 9.7% 8.9% 11.6%

The best performance indicator is marked as bold

multi-view images as the result. The voting fusionmethod
uses the voting strategy to combine the predictions.
Every image votes one visibility value with the highest
probability. The visibility value with the maximum voting
is the output of the fusion. As shown in Table 4, we can
see that our prediction fusion method achieves the best
performance.

Conclusion
We observe that image-based visibility estimation can-
not successfully learn precise models when the labels are
ambiguous. To solve this problem, we propose a deep label
distribution learning method for visibility estimation. In
our method, the visibility of every image is annotated by
a label distribution. To learn from such annotation, we
integrate CNN, RNN, and CPNN into a unified method,
which locates the farthest region in the image and min-
imizes the difference between the predicted distribution

and the ground-truth distribution simultaneously. To real-
ize actual engineering for real-time visibility monitoring,
we combine cloud computing and our visibility estima-
tion into a whole framework. The experiment shows that
compared with the absolute label or ranking label, label
distribution can achieve the best performance for visibility
estimation. Meanwhile, our method can obtain visibility
from the image efficiently.

Limitation and future work
The robustness and effectiveness of ourmethod have been
demonstrated by extensive experiments. It also has some
limitations in some special cases. Figure 10 shows two
cases. Our method relies on the information of the far-
thest region. If the region is not notable, the visibility may
not be well predicted. Moreover, the backlighting and the
local strong light still disturb the prediction. Our method
can be improved in several directions in the future. Cur-

Fig. 10 Two failure cases of our method
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rently, model learning and prediction fusion are separate.
A future direction is to combine deep multi-view learning
[58] into the training session, which leads to an end-to-
end multi-view visibility prediction framework. Another
direction is integrating edge computing [1, 14] to con-
struct a more efficient and robust visibility monitoring
framework.
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