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Abstract

workload scheduling problem in edge computing.

Edge computing is a new paradigm for providing cloud computing capacities at the edge of network near mobile
users. It offers an effective solution to help mobile devices with computation-intensive and delay-sensitive tasks.
However, the edge of network presents a dynamic environment with large number of devices, high mobility of users,
heterogeneous applications and intermittent traffic. In such environment, edge computing often suffers from
unbalance resource allocation, which leads to task failure and affects system performance. To tackle this problem, we
proposed a deep reinforcement learning(DRL)-based workload scheduling approach with the goal of balancing the
workload, reducing the service time and the failed task rate. Meanwhile, We adopt Deep-Q-Network(DQN) algorithms
to solve the complexity and high dimension of workload scheduling problem. Simulation results show that our
proposed approach achieves the best performance in aspects of service time, virtual machine(VM) utilization, and
failed tasks rate compared with other approaches. Our DRL-based approach can provide an efficient solution to the
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Introduction

Nowadays, with the increasing popularity of mobile
devices, more novel sophisticated applications are emerg-
ing, such as face recognition, inter-active gaming and
augmented reality [1]. However, duo to resource con-
straints (processing power, battery lifetime, storage capac-
ity), mobile devices cannot meet the needs of running
these novel sophisticated applications on local [2]. Con-
sidering the powerful computing and storage capabilities
of the cloud server, one suitable solution is to offload
these complicated mobile applications to cloud for pro-
cessing, so called mobile cloud computing (MCC) [3].
MCC can efficiently address the problems of limited pro-
cessing capabilities and limited battery of the mobile
devices [4]. However, the cloud server is generally far away
from mobile devices, MCC inevitably suffers from high
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latency and bandwidth limitation [5]. Moreover, accord-
ing to the prediction of Cisco, the growth rate of mobile
data required to be processed will far exceed the capac-
ity of central clouds in 2021 [6]. To resolve these issues,
Edge computing has emerged as a promising technology
that provides cloud computing capabilities at the edge of
the network in close proximity to the mobile subscribers
[7]. Compared with MCC, edge computing has the advan-
tage of lower latency, lower core network load and more
security.

Although Edge computing is a new technology with
many advantages, it still has many problems to be solved.
The edge of network presents a very dynamic environ-
ment with large number of devices, high mobility of users,
heterogeneous applications and intermittent traffic [8]. In
such environment, edge computing always encounters the
problem of how to efficiently schedule incoming tasks
from mobile devices to edge servers and cloud servers. To
elaborate, the mobile devices consist of terminal devices
and Internet of Things (IoT), which are widely distributed,
numerous heterogeneous and high mobility. When these
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mobile devices are running, they can generate a vari-
ety of different tasks. Duo to the resource constraint of
mobile devices, most of tasks need to be offloaded to the
outside servers for processing. However, these offloaded
tasks are unevenly distributed and random, which lead
to imbalanced workloads among edge servers and impair
the performance of system. For example, when massive
amount of tasks are offloaded to the same edge server
simultaneously, it is easy to cause single edge server paral-
ysis and network congestion, while other edge servers may
be in idle state. Therefore, how to schedule the incoming
stream of offloaded tasks determines the overall efficiency
and scalability of the edge computing system. Moreover,
both the communications and computation resources also
need to be allocated and scheduled efficiently for better
system performance.

Our work focuses on the workload scheduling prob-
lem which can be defined as deciding on the destination
computational unit for each offloaded task within an edge
computing system. As we know, workload scheduling is
an intrinsically hard, online problem [8]. Where to offload
decision should take many parameters into consideration
such as task property, network situation and computa-
tional resources [9]. These parameters are also highly
dynamic especially under unexpected variation of the
load. To solve problem, we propose DRL-based workload
scheduling approach, which can learn from the previ-
ous actions and achieve best scheduling in the absence
of a mathematical model of the environment. Meanwhile,
we adopt DQN-based algorithms to solve the complex-
ity and high dimension of workload scheduling problem.
Finally, we carry out an experimental evaluation based
on EdgeCloudSim [10]. To demonstrate the performance
of our approach, we evaluated with two opponent algo-
rithms using crucial performance metrics such as service
time, failed tasks rate, and VM utilization. According to
the results, our proposed method has competitive per-
formance with respect to its opponents for the cases
studied. The contributions of this paper are summarized
as follows:

We investigate workload scheduling in edge computing,
aiming at balancing the workload, reducing the service
time and failed task rate.

We introduce multi-tier edge computing architecture
and analyze its system model, then forumlate workload
scheduling problem as an NP-hard problem.

We proposed a DRL-based workload scheduling
approach with the goal of balancing the workload,
reducing the service time and the failed task rate.

We adopt DQN-based algorithms to solve the problem of
complexity and high dimension in workload scheduling.

The remainder of this paper is organized as follows.
Related work section briefly reviews the related work. Sys-
tem model and problem formulation section presents the
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system model and problem formulation. The DQN-based
workload scheduling approach section describes the pro-
posed DRL-based workload scheduling approach. Evalua-
tion results section elaborates on the simulation experi-
ment design and analyzes the results. Conclusion section
concludes our study and provides possible directions for
future research.

Related work
In edge computing, Mobile devices can offload most
tasks to the edge server for execution, which efficiently
address the problems of their limited resources and reduce
the core network traffic load. However, improper task
offloading not only brings imbalance workload among
edge servers, but also increases task latency and energy
consumption. Therefore, properly scheduling computa-
tion tasks among edge servers are crucial to optimize
the quality of services with high resource efficiency. The
scheduling research is to choose the proper decision on
the time and place where the task should be offloaded.
There has been extensive work devoted to workload
scheduling problem. Santoro et al. [11] propose a soft-
ware platform called Foggy for workload orchestration
and resource negotiation in fog computing environment.
It schedules the execution location of tasks based on com-
putational, storage or network resources. Anas et al. [12]
take computational utilization and access probability into
consideration, and develop a performance model based
on queuing theory to address the workload balancing
between service providers within a federated cloud envi-
ronment. Ma et al. [13] consider cooperation among edge
nodes and investigate the workload scheduling with the
objective of minimizing the service response time as well
as the outsourcing traffic in mobile edge computing. They
propose a heuristic workload scheduling algorithm based
on water-filling to reduce computation complexity. Fuzzy
logic is an effective method to solve workload scheduling
problem in edge computing, which has been discussed in
recent years. Sonmez et al. [8] employ a fuzzy logic-based
approach to solve the workload orchestration problem in
the edge computing systems. Their approach takes into
consideration the properties of the offloaded task as well
as the current state of the computational and network-
ing resources, and uses fuzzy rules to define the workload
orchestration actions in terms of networking, computa-
tion and task requirements to decide the task execution
location within the overall edge computing system.
However, Fuzzy logic-based approach needs to define
various fuzzy rules in advance, which will take a lot of time
and effort to measure. Therefore, in order to reduce man-
ual intervention, some studies attempt to adopt machine
learning method for workload scheduling. Nascimento,
A., et al [14] propose Reinforcement Leaning(RL)-based
scheduling approach for cloud-based scientific workflow
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execution. RL is a branch of machine learning, which
focuses on how to achieve the optimal goals through
learning in a dynamic environment. In RL, the agent, as
a learner, perceives the current state of environment and
select actions to take. When the action is executed, the
agent will receive a reward or punishment from envi-
ronment according to the effect of action. If receiving a
reward from the environment, the agent will increase the
tendency to take this action in the future to obtain more
rewards. On the contrary, if receiving a punishment, the
agent will reduce the tendency to take this action. To max-
imize the cumulative reward, agent needs to balance the
exploration and exploitation steps. In exploration step, the
agent tries the actions that have not been selected before
and explore new state to obtain higher reward. In exploita-
tion step, the agent takes the best action that has already
observed so far [15].

Although the RL-based workload scheduling approach
can reduce manual intervention and solve the problem
effectively in the case of small state and action spaces, It
is nearly impossible to obtain the accurate state or action
values via normal reinforcement learning when the state
or action spaces are very large [16]. To solve this problem,
Combining deep learning and reinforcement learning,
DRL algorithms, such as DQN [17], DDPG [18] and PPO
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[19], becomes useful for handling the problems of com-
plexity and high dimension. In this work, We proposed
a DRL-based approach for workload scheduling in edge
computing, which can learn from the previous actions and
achieve best scheduling in the absence of a mathemati-
cal model of the environment, Meanwhile, we adopt DQN
algorithms to solve the workload scheduling problem of
complexity and high dimension, aiming at balancing the
workload among edge servers, reducing the service time
and failed task rate.

System model and problem formulation

In this section, we first introduce the Multi-tier edge
computing architecture and analyze system model, which
includes task model, network model, and computing
model. Then, we formulate the workload scheduling prob-
lem based on system model. The edge computing archi-
tecture as depicted in Fig. 1

Multi-tier edge computing architecture

As shown in Fig. 1, we construct a multi-tier edge com-
puting system architecture which incorporates compu-
tational resources at various levels, as well as different
ranges of networks, such as local area network (LAN),
metropolitan area network (MAN) and wide area network
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(WAN). The first tier is edge device layer, which is com-
posed of a large number of mobile devices, I0Ts and other
edge devices. They communicate with local edge server
via wireless local area network (WLAN). The second tier
is edge server layer, which consist of edge servers and
the edge orchestrator. Edge servers are interconnected
through MAN. The third tier is cloud server layer, which
is the global cloud server distributed around world and
provide cloud service through WAN.

In this architecture, each edge server can provide com-
puting services for users within its WLAN coverage,
while cloud server can provide remote computing ser-
vices for all users. Moreover, nearby edge servers can
also provide computing services for neighbor LAN users
in domain. When an edge server cannot provide suffi-
cient resources or computation capacity, the computation
tasks can be scheduled to the nearby edge servers that are
under-utilized or the cloud for processing. In this process,
the edge orchestrator acts as the workload coordinator
among servers to monitor the environment information
and make scheduling decisions for each task to coordinate
workload of servers.

To elaborate, we take the university campus application
scenario as an example. According to this architecture,
the students and other participants are assumed to carry
and/or wear the mobile devices, such as smart phone,
Google glasses, Smart Bracelet, etc., on which applications
run and continuously generate tasks to be processed. Duo
to the limited processing capacity of a single device, these
devices have to offload some tasks to external servers. To
meet this need, a number of edge servers are deployed
at different places (such as classroom buildings, dormi-
tories, and library) on campus to provide coverage for
request services. In the real scene, the places on campus
may have different user densities according to the time
of day. For example, students concentrated their classes
in the classroom buildings in the morning, and they may
gather together in the library for reading in the after-
noon, and most of them are likely stay in dormitories at
night. The user density can directly affect the amount
of requested and workload. Typically, the user’s mobile
devices select the nearest local edge server to offload tasks
via the WLAN, such as Wi-Fi hotspots or cellular base sta-
tions. In our system, we define the places with three type
attractiveness levels, which are based on user’s device den-
sity. If the attractiveness level of the place is high, such
as an auditorium during the conference, lots of students
may wear the mobile device and gather there. Duo to the
high device density and excessive task offloading, both
the network and the computational resources are likely
to be congested in LAN. To deal with this problem, the
local edge server also needs to offload these tasks which
beyond its capacity to the nearby edge servers or cloud
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server. However, how to schedule these tasks to achieve
the desired optimization objectives is not an easy problem.

System model
To investigate workload scheduling problem, we should
first model the edge computing system according to the
above architecture, including task model, network model
and computing model. We set that the system consists of
k mobile devices, m edge servers and one remote cloud
server. k and m denote the number of mobile devices and
edge servers respectively. For each device, there is only
one local edge server which can be accessible via WLAN
and (m — 1) nearby edge severs which can be accessi-
ble via MAN. Each task offloaded from mobile device
can be scheduled to execute on local edge server, nearby
edge server, or cloud server. In general, the local server
is the first choice due to the advantages of short distance
and low latency. However, when local edge server can-
not provide sufficient resources or computing power, the
corresponding tasks should be scheduled to the nearby
edge servers or cloud for processing. In this process,
the edge orchestrator acts as the workload coordinator
among servers to monitor the environment information
and make scheduling decisions for each task to coordinate
workload of servers.

1) Task Model

Each mobile device can produce different tasks, which
may be compute-intensive, I/O intensive or both. To bet-
ter represent the tasks, we describe a task; in a four-field
notation (9;, B;, ¢;, 7;), which 9; denotes the input data size
(in bits), B; denotes the output data size (in bits), and ¢;
denotes the total number of CPU cycles that is required
to complete the task;, and t; denotes the delay constraint
of task; . We assume that all the tasks are indivisible and
offloaded as a whole to edge server or cloud for execution,
and the tasks are independent of each other.

2) Network Model

As shown in Fig. 1, In our edge computing system,
tasks can be scheduled to execute on any server, such
as local edge server, nearby edge servers or cloud server.
Therefore, tasks may pass through multiple networks dur-
ing scheduling process, such as WLAN, MAN or WAN.
Considering the difference of bandwidth, transmission
rate and interference among different networks, these
will have a certain impact on the transmission delay and
performance of task scheduling. We calculate the commu-
nication delay generated by scheduling tasks to local edge
server, nearby edge servers and cloud server, respectively:
If the local edge server is selected as offloading destina-
tion, the mobile device first uploads the computing to the
local edge server through a wireless channel, and then
edge server returns the result to the mobile device after
the task is completed. In this process, the communication
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delay on WLAN is mainly caused by transmission delay of
task;, which can be expressed as:

i ~ 4l i
teom ™ by = tup + Liown

ti _ 0; . i _ ,Bi . (1)
up— ’ down— )
Rwlan Rwlun

where, £/, represent the communication delay of task; ,
t;, represent the transmission delay of task; , t,,, represent

the upload time of task; , and £, represent the result
download time of task; ,R ,  represent WLAN transmis-
sion rate. In our system, we assume that the upload and
download transmission rate between mobile devices and
local edge server are the same. The WLAN transmission
rate is quantified as:

pnhn,s
M
No + Z pnhn,s

n=1

1+ (2)

Ryian = wwlanlng

Where, wy,,, is the bandwidth of WLAN, p, is the
transmission powers of edge device, %, is the channel
gains between the ny mobile device and the sy edge
server, Ny is the noise power.

According to the above formulas, we can see that the
WLAN transmission rate is closely related to the band-
width. For example, if too many mobile devices choose the
same channel to communicate with the base station and
the interference between them will increase, which will
affect the transmission rate.

If the nearby edge server is selected as offloading des-
tination, the task; will be scheduled to the nearby edge
server via the MAN, the transmission delay is mainly
affected by the MAN bandwidth. The transmission delay
of the task; on MAN can be expressed as:
tid = tl{tp + ttiiown = alle_{_ IBl

3)

man

Where, R;,,, represent the MAN transmission rate.

If the remote cloud server is selected as offloading des-
tination, the task; will be uploaded to the cloud server
via the WAN. In general, there is a long distance between
the cloud server and the user, the propagation delay of
signal back and forth cannot be ignored. Therefore, the
communication delay includes transmission delay #;; and
propagation delay ¢,4. The communication delay of the on
WAN can be expressed as:

téom = tid + tlivd

= t:tp + tziown + tglad (4)
i+ Bi |
= + by

RWdVl
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The propagation delay is much longer than the trans-
mission delay (¢,4 > t;4). Thus, the communication delay
is mainly determined by the propagation delay.

3) Computing Model

For workload scheduling, an important indicator is ser-
vice time, which represents the time it takes for the task
to upload to the server until it is completed. Service time
consists of task waiting time and execution time. In this
section, we will calculate the service time required on
the local edge server, nearby edge server and the cloud,
respectively. When a task is uploaded to the local edge
server, it first will be generally arranged in the task queue
of server to wait for processing. There is a waiting time
between the uploading to server and starting execution.
The waiting time is related to the VM utilization of the
local edge server. If VM utilization is low, which means
that the current local edge server is relatively idle, the task
can get VM resources quickly and its waiting time will be
short. On the contrary, if VM utilization is high, which
means that the current local edge server is relatively busy,
and the waiting time will be long. Thus, the service time
of task; on local edge server can be expressed as:

i g i i Ci
bs = Lyait T bexer fexe = 7 (5)
Si

Where,c; is the total number of CPU cycles that is
required to complete the task; . f; represents local edge
server computing power. tf” it 1S waiting time between the
uploading to local edge server and starting execution

Similarly, when the task is migrated to the nearby edge
server, the service time of task; on nearby edge server can
be expressed as

, ) , , ¢
t; = tllwzit + téxe’ téxe =7 (6)

fnb

Where, f,;, represents nearby edge server computing
power. tﬁmit represents waiting time between the upload-
ing to nearby edge server and starting execution. When
the task; is offloaded to the cloud, we consider that cloud
resources are always sufficient, the waiting time of tasks
can be ignored. Thus, the service time on cloud sever can

be expressed as
b N toye = j% 7)

Where, f. represents cloud computing power. Accord-
ing to the above analysis, as we know that the main factors
that affect the service time are the amount of computa-
tion required for the task, VM utilization and computing
power of the server.

4) Definition of task Failure Each task has its own delay
constraint 7, if the running time exceeds this constraint
value, the task is considered to be failure. We define the
condition for task failure as follows:

F = {task; ’téom +t,>Tie N} (8)
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Problem formulation and analysis
Based on the analysis of the task, network and comput-
ing model, we calculator the total delay of task scheduling
to local edge server, nearby edge server and cloud server
respectively. The total delay on local edge server:
t;ocal = téom + t;

= t:tp + ttlmit + tflzxe + tiiown
=&+@+Q
Rwlan fi
The total delay on nearby edge server:

)

i
+ twqit

' j t
t:’lb = téom + i
= t;p + tllmit + telzxe + t;’own
=&+&+i
Rypan Jub
The total delay on cloud server:

(10)
+ tlivait

téloud = téom + tg
= tlldp + t;xe + téiown + tglwl
i+pi i
= + o+t
RWﬂVl ﬂ pd
According to total delay of local edge server, nearby edge
server and cloud server. Our optimization objective of the
workload scheduling problem is to reduce the total delay
and failure rate of the task. The optimization problem is
formulated as follows:

(11)

n
: _ i i i i
min £ = z :Altlocal + Aztnbl“‘)‘mtnb(m) + )‘W’"‘ltcloud
i=1

i i )
St Logy tloxe < Ti

)"lr cee )‘-m+1 € {01 1}
(12)

Where, A1,...Au+1 represent the scheduling decision
variables. Since tasks are indivisible, these scheduling
decision variable are integer variables of 0 and 1, but only
one decision variable can be 1 in each decision, which rep-
resents the selected offloading destination. For example, If
A1 = 1 and the others are 0, which means the local edge
server is selected as the offloading destination. If A; =
1, (i €[2,m]), which means the iy, nearby edge server is
selected. If A,,41 = 1 and the others are 0, which means
the cloud is selected as offloading destination. Since the
decision variables are integer variables, the optimal solu-
tion can be found by traversing when the number of tasks
is small. However, with the increasing of tasks, the scale of
solution space will increase rapidly and become too large.
In this case, Equation (12) is no longer a convex opti-
mization problem, but a NP-hard. Moreover, the effect of
task scheduling is affected by many parameters, such as
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network bandwidth, VM utilization, and task attributes.
These parameters can be highly dynamic especially under
unexpected variation of the load. In the next subsection,
we propose a workload scheduling approach based on
deep reinforcement learning to solve the problem.

The DQN-based workload scheduling approach
According to the above analysis, we conclude that work-
load scheduling in edge computing is an online and
NP-hard problem. In this section, we will introduce our
proposed DRL-based approach for workload scheduling
problem.

Specifically, the DQN is one of DRL algorithms in order
to tackle the complex and high dimension problem. The
DQN modeling is based on the Markov decision pro-
cesses (MDP), which includes State space S, action space
A, and reward function R. In order to apply DQN in the
edge computing scenario, we need to specifically design
different components of MDP as described below:

State space
In DRL approach, the first step is to define the state of
the system environment. As far as we know, our multi-
tier edge computing system has thousands of time-varying
parameters at runtime. Therefore, how to select key
parameters to accurately describe the current system envi-
ronment is crucial to task scheduling. According to the
previous analysis, the VM utilization status of the servers
and the network conditions from users to servers should
be considered. These parameters can be highly dynamic
especially under unexpected variation of the workload.
Moreover, the characteristics of task also play an impor-
tant role on the system performance [7]. In our work, the
state space S contains all of environment states, and each
state includes three parameters: server states, network
states and tasks characteristic.
S={s1,82su} (13)
s¢ = {servery, networky, task:},s; € S

Where, server; represents the states of all servers at step
t: server; = {uy,uy - - - u,} , the u, is the VM utilization of
nyy, server. The network; is the states of networks at step
t: network; = {@hy,, 5 ©hpans @z an’ » the @l @y
and w{w 4N Tepresent the bandwidth of WAN,MAN and
WLAN at step ¢, respectively. task; is the task that need
to be scheduled at step ¢ : task; = {9;, B, ct, ¢}, which 9,
denotes the input data size (in bits), 8; denotes the output
data size (in bits), and ¢; denotes the total number of CPU
cycles that is required to complete the task, and t; denotes
the corresponding delay constraint of task; .

Action space
The next step is to define the action space A. Actions
determine the transfer rules between states. When a task
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arrives, it needs to decide which the suitable server should
be choice to execute the task. Therefore, the action space
includes all servers. In our system, the server consists of
local edge server, multiple nearby edge servers and a cloud
server. In nearby edge servers, we select the nearby edge
server with the least loaded. At the decision step ¢, the
action space can be simplified as follows:

(14)

Ar=lapa,...al " a.}

Where, a; represent the action that allocate task to the
local edge server, al...a”~! represent the action that
allocate task to one of the nearby edge severs, (m-1) repre-
sent the number of nearby edge servers, g, represent the

action that allocate task to the cloud server.

Reward function

The reward function is used to describe the immediate
reward from one state to another state after an action is
taken, based on which to evaluate the action. For a reward
function, the first thing to do is to determine what the
optimization goal is, and judge the positive reward or
negative reward according to its goal.

In this paper, our optimization goal is to reduce the total
delay and failure rate of the task. As far as we can see,
the main reason of task failure is the unreasonable task
allocation, which leads to the task waiting for execution
or the transmission time is too long and exceed its dead-
line. Therefore, we can evaluate the reward according to
following formula:

(: — T)

Re=———
IS @ =Ty
1

(15)

where, T; represents the total delay of current task, t; rep-
resents the corresponding delay constraint of task; . First
of all, we judge whether to reward or punish by whether
the task can be completed within the deadline. If t; > T}
,which means the current task is completed within its
deadline and receive a positive reward. If t; < T} , which
means the current task exceed its deadline and receive a
negative reward or punishment. The size of the reward is
measured by reference to the average.

DQN-based workload scheduling algorithm

Based on the components defined above, our goal is to
balance the workload and reduce the service time. Our
algorithm scheme is shown in Fig. 2. We adopt two neu-
ral networks in DQN, one is called the online network
and the other is called target network, they have the same
structure but different parameters. Online network uses
the latest parameters 6;, which are updated according to
the loss Function. The target network uses parameters 6; ",
which are copied from the online network at every N step.
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DQN uses a deep convolution network to calculate
the action-value function of online network, which can
be expressed as Q(sy, 4y, 0;). The action-value function of
target network can be expressed as:

yi=ri+y max Q (St+1,6l, '9,-_) (16)

where,R; represents the reward received after taking
action a;, y € {0,1} is the discount factor, which is
used for function converge. the max Q-value action a is
selected to execute in the current state s; and transfer to
the next state sy11.

In the training of DQN, the loss function of each experi-
ence is defined as the mean square error between the value
function of online network and target network:

L; 0;) = E[(5: — Q(st, ar,6)?)]

Take the partial derivative of parameter and the gradient
is as follows:

VoL (6) = E[(i — Q(s,4,6))) V6,Q (5,4, 6;)]

DQN reduces the loss to a limited range through gradi-
ent descent, and both the value function and the gradient
value are in the normal range, which ensures the stability
of the algorithm.

To perform experience replay we store the agent’s expe-
riences e; = (St, s, 1't, Se+1) at each time-step t in replay
memory Dy = (ey,...,e:). During training, some empiri-
cal data are randomly selected from the replay memory D
to update the parameters of the network by stochastic gra-
dient descent. The advantage of this experience playback
mechanism can break data correlations and make neural
network update more efficient.

Our DQN-based Workload Scheduling algorithm is
presented in Algorithm 1, which is divided into six steps
and we describe each step as follow:

Step 1: Input variables and initialize parameters. The
variables include Npin , Nmax » A, @, ¥ , & . Npin is the
min number of mobile devices, Npax is the max number
of mobile devices, A represents the number of devices
increased each time. Thus, the number of iterations can
be calculated as M = %; we also need to set
the learning rate «, the discount factor y and the greedy
coefficient ¢.

Step 2: Initialize replay memory D to capacity N, which
is used to store experience sample(transition) for experi-
ence replay, then initialize action-value function Q with
random weights 6 and target action-value function Q with
weights 0 = 6.

Step 3: Adopt the e-greedy strategy to select action
a; according to the state s,then execute action 4; and
observe reward r; and next state St+1 to store transition
(8¢, ar, 1e, Se41) into replay memory D

Step 4:After each network output, start training by
randomly sampling a number of Batch data from replay

(17)

(18)
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Fig. 2 The DQN-based workload scheduling scheme

memory D, update the action value of online network. Set
target network output according to equation(16).

Step 5: Perform a gradient descent step on equation (17)
with respect to the network parameters.

Step 6: After several steps of each iteration, copy param-
eter 0 of the online network to the target network as the
new parameter 7.

Evaluation results

In this section, we conducted a large number of exper-
iments to evaluate the performance of proposed DQN-
based workload scheduling algorithm. To illustrate the
effectiveness of our algorithm, we compare our algorithm
with other algorithms in term of the average number of
failed tasks, average service time, average VM utilization
and average network delay. Before presenting the evalua-
tion results, we first introduce the competitor algorithms
and evaluation setup.

Competitor algorithms
In order to benchmark the proposed DQN-based solution,
we compare it with another two DRL algorithms, which

are the DDPG-based and PPO-based workload scheduling
algorithms.

1) The DDPG-based algorithm combines the actor-
critic method, deterministic strategy gradient method,
and experience playback mechanism to learn the optimal
strategy in model-free continuous control. Action net-
work and criticism network are used in DDPG online
decision stage, and experience replay and target network
are used in offline training stage. The DDPG-based work-
load scheduling algorithm is presented in Algorithm 2.

2) The PPO-based algorithm is under Actor-Critic
structure and alternate between sampling data through
interaction with the environment, and optimizing a sur-
rogate objective function using stochastic gradient ascent
[19]. The core idea of PPO is to restrict the update range
of the old and new policies to improve stability [20]. The
PPO-based Workload Scheduling Algorithm is presented
in Algorithm 3.

Evaluation setup
In this work, all experiments are performed on the Edge-
CloudSim [10], which provide a simulation environment
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Algorithm 1 DQN-based Workload Scheduling Algorithm

Algorithm 2 DDPG-based Workload Scheduling Algorithm

InPut= Nnin» Nmax> A, o, Y, €
Output: workload scheduling decision

Initialize replay memory D to capcaity N

2: Initialize action-value function Q with random
weights 0

3: Initialize target action-value function Q with
weights 0 = 6~

4: For episode = 1,M do

5: Initialize sequence s; = {x;} and
preprocessed sequence ¢; = ¢1 (s1)
6: Fort=1Tdo
7: With probability ¢ select a random action a;
8: Otherwise select a; = m;lx Q(st,a,0)
9: Execute action a; and observe reward r; and
next state x4
10: Set s;+1 = 84, ap, %+ and preprocess
Gt+1 = @ (St+1)
11: Store transition (¢, ag, 1y, Per1) in repaly
memory D
12: Sample random minibatch of transitions
(¢, aj 1, ¢j+1) from repaly memory D
Tj
13 S =\ 4y max Qsj1,4,67)
14: Perform a gradient descent step on
(yj — Q> aj, 6))? with respect to the
network parametersAQ
15: Every C steps reset Q = Q
16: End for

17: End for
Online making workload scheduling decision:
18: Load the parameters 6;
19: Calculate action-value Q(s, a; 0)
20: Output a; = argmaxQ(s;, a; 0)

specific to Edge Computing scenarios. Based on CloudSim
[16], EdgeCloudSim adds considerable functionality such
as network modeling, load generation as well as workload
orchestrator, so that it can accurately simulate the real
edge computing environment [21].

In the experiment, we adopt edge computing architec-
ture is a two-tier with orchestrator, which is composed of
1 cloud servers, 14 edge servers and a large number of
mobile devices. The cloud server has 4 Virtual Machine
(VM) with 100 giga instruction per seconds (GIPS) of
CPU power, 32GB of random access memory (RAM) and

InPUt: Nnin» Nmax> A,
Output: workload scheduling decision

1:  Randomly initialize critic network Q (s, 2|0?) and
actor (s, a|l0*) with weights 62 and 6.

2:  Initialize target network Q" and p’ with weights
09 «— 9Q o1 — on

3:  Initialize replay buffer R
For episode = 1 to M do

5: Initialize a random process N for action
exploration

Receive initial observation new state s;
Fort=1to T do

8: Select action a; = p (s¢|6") + Ny according
to the current policy and exploration noise

9: Execute action a; and observe reward r;
and observe new state St4+1

10: Store transition (s¢, g, 1't, S¢4-1) in R

11: Sample a random minibatch of N
transitions (s;, a;, 1y, Si+1) from R

12: Setyi =ri+yQ (sn (i1 [0) 02

13: Update critic by minimizing the loss:

2
L=3%>(yi—Q(sail69)

14: Update the actor policy using the sampled

policy gradient:

Voul ~ 5 2 VaQ(s,a]09)
mspaatsn Vo 1 516) |,
15: Update the target networks:
69 « 6%+ (1 —1)6<
Or — ot + (1 — 1)o"
16: End for
17: End for

1000 GB storage. Each edge server has one host that oper-
ates 4 VM with 10 GIPS of processing capacity, 2 GB of
RAM and 16GB storage to handle the offloaded tasks. In
order to simulate different loads, we initialize the number
of mobile devices as Npin = 200, and increase 200 each
time to reach the maximum Npyax = 2000.

Each mobile device can run four different applications,
namely augmented reality, infotainment, and health mon-
itoring applications. Each application represents different
task size, latency tolerance, and task length. The task has
random input/output file sizes to upload/download and
have random lengths.
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Algorithm 3 PPO-based Workload Scheduling Algorithm
Input: Npyin, Nmax, A,
Output: workload scheduling decision
Forie {l,---,N}do

1

2 Run policy 7y for T timesteps, collecting{s;, a;, r¢}
3:  Estimate advantages A= Yores vty — Vi (st)
4 Told < 9

5: Forje{l,---,M} do
6

7

8

9

Jppo(0) = YL, Zeads) A 3 KL [1e04|76)]

Told (atlst)
Update 6 by a gradient method w.r.t. /Jppo ()
End For
Forje{l,---,B}do
T t'—t 2
100 Lp(@) = =Xy (X! e = V(o)
11: Update ¢ by a gradient method w.r.t.Lp (¢)
12:  End For

13:  IfKL [woq|me] > BrignKLsarger then & < ak

14:  Elseif KL [7o4]70] > BiowKLiarge: them A < A /a
15:  Endif

16: End For

According to the attractiveness of user, we divide places
into three different levels, which directly affects the dwell
time that the user spends in the related places. We set the
mean waiting time of type 1, 2 and 3 respectively as 60, 30
and 15 minutes. We also set WAN Propagation Delay as
100ms and Lan Internal Delay as 5ms.We set the related
parameters in simulations in Table 1.

Table 1 the related parameters in simulations

Parameters Values
Cloud Sever has 4 VM
Each VM in Cloud sever CPU 100GIPS
RM 32GB
Storage 1000GB
Edge Server has 4 VM
Each VM in Edge Server CPU 10GIPS
RM 2GB
Storage 16GB
Number of Mobile Devices 200 to 2000
The mean waiting time in type 1 place 60 minutes
in type 2 place 30 minutes
in type 3 place 15 minutes
WAN Propagation Delay 100ms
Lan Internal Delay 5ms
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Results and analysis

In order to illustrate the effectiveness of our proposed
DRL-based workload scheduling approach. We com-
pared it with PPO-based and DDPG-based scheduling
approaches in terms of average service time, and average
VM utilization, failed tasks rate. The results are shown in
Fig. 3.

Figure 3(a) shows the average service time of differ-
ent approaches. We can see that the average service time
for each approach increases with the number of mobile
devices. At the beginning, the longest of the average ser-
vice time is PPO-based approach, which is 0.8 seconds,
followed by DDPG-based approach is 0.75 seconds, and
the shortest is DQN-based approaches,which is 0.7 sec-
onds. As the number of devices increases, the average
service time of the three approaches increases. When the
number of devices increases to 2000, the average server of
DDPG-based approach is the longest, reaching 3 seconds,
followed by PPO-based approach reaching 2.5 seconds,
and DQN-based approach is 1.9 seconds. Compared with
other approaches, our proposed DQN-based approach
achieves the shortest average service time among these
three approaches and the curve stays relatively flat during
the whole experiments, which shows that our proposed
DRL-based approach makes the task distribution more
balanced.

Figure 3(b) shows the average VM Utilization of dif-
ferent approaches. At the beginning, the lowest of the
average VM utilization is PPO-based approach, and the
average VM utilization of each approach increases with
the number of devices. When the number of devices
increases to 1000, the lowest of the average VM utiliza-
tion is replaced by DQN-based approach, and stayed there
until the end, reaching about 24%.

Figure 3(c) shows the failed tasks rate of different
approaches. As can be seen from the figure, when the
number of mobile devices changes from 200 to 1600,
the failed tasks rate of all approaches can be kept
below 1% and relatively stable. When the number of
mobile devices changes from 1400 to 2000, the failed
tasks rate of each approach increases with the num-
ber of mobile devices. Among them, the PPO-based
approach has the fastest growing, and reaches 6% at 2000
devices, followed by DDPG-based approach, reaching 4%.
Compared with other approaches, our proposed DQN-
based approach achieves the lowest failed task rate of
only 3%.

Although we can see the failed tasks rate of different
approaches from Fig. 3(c), we don’t know the reasons of
task failure from figure. Next, we will analyze the reasons
for task failure. In our simulations, Task failure is due to
the following reasons:

1)The lack of VM capacity. If the VM utilization is too
high, the server does not have enough VM capacity to
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meet new coming tasks, which make task waiting time too
long to failure.

2) The mobility of users. If the user leaves his location
before getting the response of the previously requested
tasks, the tasks will fail because the user is out of the pre-
vious WLAN coverage and cannot receive the response
from servers.

3) The lack of network resource. If a large number
of users simultaneously use the same network resources
(such as WLAN, MAN or WAN), it will cause insufficient
network bandwidth or even network congestion, resulting
in packets loss, and eventually lead to task failure.

The reasons for tasks failure are shown in Fig. 4. It can
be clearly seen that, In the PPO-based approach, the main
reason for task failure is due to lack of VM capacity. When
the number of users reaches 1600, the mobility of users
becomes the main reason for task failure. In the DDPG-
based approach, the main reason for task failure is due to
lack of WAN resource. When the number of users reaches
800, Lack of VM capacity becomes the main reason of task
failure In our DQN-based approach, the main reason for
task failure is due to MAN failure, followed by mobility of
users. In all approaches, there is almost no transmission
failure in the WLAN, so the reason of the tasks failure due
to the WLAN can be negligible.

Given the above observation, our proposed DQN-based
workload Scheduling approach has the best performance
in aspects of service time, and VM utilization, failed tasks
rate among these three approaches. Especially, When the
number of users is large (above 1600), our proposed
DQN-based approach still can keep the lowest task fail-
ure rate, which shows that the task allocation is more
reasonable and effective, and ensures the stability of the
system

Convergence analysis

In this section, we will analyze the convergence of our pro-
posed DQN-based algorithm by observing the change of
training curves in the training process. Figure 5 presents
the training curve of average reward under the DQN-
based algorithm during 400 training episodes. It can be
seen that the curve always fluctuate upward and down-
ward at the first of 150 training episodes, because the
agent is in the exploration stage and the reward value is
unstable. As the number of training episodes increases,
the agent is changed from the exploration phase enters the
learning phase using experience, the algorithm begins to
converge and the reward value tends to stabilize.

Conclusion

In this paper, we have investigated workload scheduling in
edge computing, aiming at balance the workload, reduce
the service time and minimize failed task rate. Consid-
ering that edge computing system is a very dynamic
environment and affected by several factors. We ana-
lyze system model, which includes task model, network
model, computational model, according to the Multi-tier
edge computing architecture, and formulate the workload
scheduling problem based on system model as a hard and
online problem. To deal with the challenges of workload
scheduling problem, we proposed a DRL-based approach,
which can learn from the previous actions and achieve
best scheduling in the absence of a mathematical model
of the environment. Simulation results show that our pro-
posed approach achieves the best performance in aspects
of service time, virtual machine utilization, and failed
tasks rate compared with other approaches. Our DRL-
based approach can provide an efficient solution to the
workload scheduling problem in edge computing.
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Nomenclature

i index of a task

09; input data size (in bits) of task;

Bi output data size (in bits) of task;

Ci total number of CPU cycles that is
required to complete the task;

T delay constraint of task;

tom communication delay of task;

;: ’ transmission delay of task;

tup upload time of task;

t;,awn download time of task;

it waiting time between the uploading to
local edge server and starting execution

Owlan bandwidth of WLAN

Pu transmission powers of mobile device

I/ channel gains between mobile device and
edge server

Ny noise power

fi local edge server computing power

fab nearby edge server computing power

fe cloud computing power

Ryan MAN transmission rate

R, .. WLAN transmission rate

Aly...Am+1  scheduling decision variables

server; states of all servers at step ¢

Uy VM utilization of ny, server

network; states of networks at step ¢

T; total delay of current task
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