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Abstract 

Energy efficiency is an important issue for reducing environmental dissipation. Energy efficient resource provisioning 
in cloud environments is a challenging problem because of its dynamic nature and varied application workload char-
acteristics. In the literature, live migration of virtual machines (VMs) among servers is commonly proposed to reduce 
energy consumption and to optimize resource usage, although it comes with essential drawbacks, such as migration 
cost and performance degradation. Energy efficient provisioning is addressed at the data center level in this research. 
A novel efficient resource management algorithm for virtualized data centers that optimizes the number of servers to 
meet the requirements of dynamic workloads without migration is proposed in this paper. The proposed approach, 
named Look-ahead Energy Efficient VM Allocation (LAA), contains a Holt Winters-based prediction module. Energy 
efficiency and performance are inversely proportional. The energy-performance trade-off relies on periodic compari-
sons of the predicted and active numbers of servers. To evaluate the proposed algorithm, experiments are conducted 
with real-world workload traces from Google Cluster. LAA is compared with the best approach provided by CloudSim 
based on VM migration called Local Regression-Minimum Migration Time (LR-MMT). The experimental results show 
that the proposed algorithm leads to a consumption reduction of up to 45% to complete one workload compared 
with the LR-MMT.
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Introduction
Cloud computing is a collection of computer system 
resources that are dynamically provisioned to provide 
services to users based on demand access. Service pro-
viders offer customers three services, Software as a 
Service (SaaS), Platform as a Service (PaaS), and Infra-
structure as a Service (IaaS), through data centers. As 
customers’ needs for the services offered by data centers 
increase, the amount of energy consumed by data centers 
increases linearly. Increases of 48% and 34% are estimated 
for total world energy consumption and CO2 emissions, 
respectively, between 2010 and 2040 [1]. Service provid-
ers try to reduce the energy cost in data centers due to 
both laws and regulations and standards. In addition, 
reducing the cost of the services and increasing the profit 

rate are other goals of providers. On the other hand, 
users also want to have the same service with acceptable 
quality and less cost which are defined through Service 
Level Agreement (SLA). For this reason, while aiming to 
reduce energy consumption and cost, the performance 
of the service offered to users should also be considered. 
However, it is not easy to address the needs of the users 
and the resources that will meet these requirements.

Improving the energy efficiency of data centers has 
received significant attention in recent years. When cloud 
data centers are running at low usage levels of computing 
capacity without optimization, it causes high energy ineffi-
ciency. Many existing studies [2–5] have proposed running 
servers’ computational units at full capacity to increase 
energy efficiency, but this causes performance degradation. 
To solve performance degradation caused by running at full 
capacity, the static optimal utilization threshold is defined 
for each resource type, including CPU, RAM, bandwidth 
and so on [6–9]. However, a static threshold may lead to 
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machines being turned on or off unnecessarily since the 
resource demand in the future is not considered. Another 
approach in the literature is server consolidation [10–13], 
which reduces the number of active physical machines 
through VM migration or by collocating VMs to a small set 
of physical machines. However, VM migration and server 
consolidation techniques cause low throughput from the 
perspective of the service consumer as well as energy over-
heads from the perspective of the service provider.

To address performance and cost issues, we propose an 
energy efficient resource allocation approach that inte-
grates the Holt Winters forecasting model for optimizing 
energy consumption. The proposed approach includes a 
forecasting module to take into account not only the cur-
rent situation but also the potential customer resource 
needs in the future. The approach is based on an adaptive 
decision mechanism for turning servers on/off and detect-
ing under/over utilization. This approach is designed to 
avoid performance degradation and improve energy effi-
ciency. The basis of this approach is based on our previous 
work [14]. The forecasting module is added as prom-
ised in previous paper. Results have been analyzed more 
robust through sensitivity analysis and preferred compari-
son methods. Moreover, google cluster data [15] are used 
to evaluate the algorithm with a real-world workload. The 
algorithm is implemented and run on CloudSim [16], 
which is a commonly used Cloud simulator as in the pre-
vious study. CloudSim provides several VM allocation and 
migration policies and is mainly focused on IaaS-related 
operations. However, the provided allocation algorithms 
run with static workloads. The existing code of CloudSim 
is extended to meet dynamic workload requirements and 
make a fair comparison with the proposed algorithm.

The key contributions of this research are as follows:

•	 We propose an energy efficient resource allocation 
algorithm called Look-ahead Energy Efficient Resource 
Allocation (LAA). LAA facilitates adaptive allocation of 
the incoming user requests to computing resources. A 
single threshold is used for CPU overutilization detec-
tion, but it is not the only parameter used to decide 
whether to turn a new server on to host the newly 
arrived workload. The trend of the system is as impor-
tant as the threshold during the allocation decision pro-
cess. If the number of already active servers meets the 
forecasted future requirement and the current overuti-
lization situation occurs temporarily, then the proposed 
algorithm makes the allocation decision for the newly 
arrived workload by considering the remaining time for 
already running workloads on active servers.

•	 The proposed algorithm minimizes energy consump-
tion while preventing performance degradation. The 
algorithm is based on not only the current state of 

the system but also future demand as determined 
through Holt Winters forecasting to make adap-
tive decisions. Google has published the trace data 
of their clusters. These data are used to evaluate the 
performance of the proposed algorithm. After data 
analysis and comparison with another time series 
analysis methodology called Auto Regressive Inte-
grated Moving Average (ARIMA), Holt Winters gave 
the better result in terms of the minimum error rate.

The remainder of this paper is organized as follows. 
Related work is reviewed in Related work. Problem defi-
nition describes the obtained problem and system model. 
The focus of VM consolidation algorithml is on the energy 
efficient VM consolidation approach. Performance evalu-
ation evaluates our work through Google workloads by 
comparison with previous studies with migration. In Con-
clusion, we summarize and provide concluding comments.

Related work
Khattar et  al. [17] is a broad survey paper about energy 
efficiency in Cloud Computing. Optimization techniques 
are divided into two main categories: heuristics and 
metaheuristics. Although, it mainly focuses on the heuris-
tics, it also provides the view of metaheuristics. According to 
the survey, LAA can be evaluated under the category of the 
probabilistic heuristics. Choosing the appropriate optimiza-
tion technique to solve the problem is not always easy. The 
workload type and the time constraint can be considered to 
decide the appropriate solution for the problem under con-
sideration. Workload types can be split into two categories: 
workflow and independent tasks. Contrary to independ-
ent tasks, in workflow category the workload is considered 
as a set of dependent tasks and the problem is formulated 
as a mapping of a set of tasks and resources. Metaheuristic 
methodologies are suitable to find global optimal mapping 
solution for workflows. Moreover, metaheuristic method-
ologies can be applied in resource scheduling step for real-
location of already allocated tasks. Heuristic methodologies 
are commonly preferred to find the local optimal solution 
of resource placement and task scheduling for independent 
tasks at a particular instant of time.

As a representative example in metaheuristic approach, 
a recent paper [18] proposes Particle Swarm Optimization 
(PSO) model for cost minimization and deadline constraint 
scheduling. Though they focus on the advantages of the 
cloud computing such as the use of unlimited resources, 
flexibility in terms of acquiring and releasing resources, het-
erogeneity, and pay per use model, the key challenges such 
as energy inefficiency and carbon emission are not consid-
ered [19] provides a solution combination of different tech-
niques for resource allocation and task scheduling. Due to 
providing the response time improvement, the combination 
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of Bandwidth-aware task scheduling (BATS) and BAR is 
used to allocate tasks. Since that the system only considers 
availability of bandwidth in allocating resources with this 
step, preemption and divide and conquer steps are proceeds 
to execute tasks if the VM is overloaded with the assigned 
task in BATS + BAR step. However, additional steps to exe-
cute workloads because of ignoring step to check availabil-
ity of resources causes energy overhead [20] that provides a 
comparison metaheuristic scheduling algorithms and analy-
sis results, emphasizes the lack of applying metaheuristic 
techniques to solve energy inefficiency as an open issue. In 
another broad survey on task scheduling mechanisms [21], 
only few papers consider energy consumption while provid-
ing task scheduling via using metaheuristic techniques.

Consolidation is a commonly used technique during 
allocation and migration for saving energy by using mini-
mum number of resources and increasing resource uti-
lization rate. Consolidation can be achieved during both 
allocation and migration by using heuristic solutions. Allo-
cation and placement step of migration are handled as a 
Bin Packing optimization which places items into the min-
imum number of PMs using heuristic techniques which 
are enough fast for large-scale system but not guaranteeing 
optimal results [22]. Bin packing approach is applied in dif-
ferent ways in the literature as shown in Table 1. Finding 
suitable host for both incoming workload and already run-
ning workload to be replaced is the basic step of the bin 
packing approach. Studies differ from each other accord-
ing to methods used for finding suitable host such as First 
Fit, Worst Fit and incoming request types such as VM, task 
or container [23]. Other differentiating point of studies is 
meaning of bin capacity as optimal resource utilization 
rate of a resource or fully loading. Studies are also divided 
into two categories in terms of bin. In some studies, CPU 
is considered as a bin since [24] shows that CPU is the 
component with the highest proportion in terms of power 
consumption of a physical host. Moreover, the running 
machines at idle states or low utilized cause energy inef-
ficiency. Power consumption of CPU in idle state is more 
than 50% of the fully loaded state [25–28]. However, [6, 
13, 29] propose multi-dimensional bin packing solutions 
because CPU is a sufficient parameter alone for only CPU-
bounded workload and based on the workload require-
ments, other resource types also should be considered.

Server consolidation through migrating workloads into a 
small set of servers and switching idle servers off is a com-
monly used technique to save energy. Migration is a process 
of replacement VMs from the source hosts to target hosts to 

reduce the number of active servers via following 4 funda-
mental steps: (i) threshold definition, (ii) source host detec-
tion, (iii) VM selection and (iv) VM placement. Threshold 
is used to classify hosts as source and target. Threshold 
value can be set for single resource or multiple resources. It 
depends on the problem formulation defined as above (i.e. 
unidimensional and multidimensional). Threshold value can 
be set before the runtime statically or at the runtime dynam-
ically. According to [8], optimal CPU utilization is set as 70% 
and if the usage exceeds the optimal value, it means the 
server is overloaded. Therefore, some selected VMs should 
be migrated out to reduce performance degradation and 
energy consumption [30–32] propose auto-adjustment of 
threshold by using statistical analysis of historical data such 
as Median Absolute Deviation, Interquartile Range, Local 
Regression belong VMs because of the motivation which 
fixed values of thresholds are unstable for unpredictable 
workloads. Underloading is also undesired state in terms of 
energy efficiency. Through migration all VMs from underu-
tilized server to target hosts, underutilized server’s state is 
changed to idle, and it can be switched off to save energy. 
In [33], K-means clustering algorithm is used to define three 
threshold Ta, Tb, Tc values to classify hosts as little loaded, 
less loaded, normally loaded and overloaded. Underutiliza-
tion is divided into two sub states as little loaded and less 
loaded. Besides overloaded hosts, little loaded hosts also are 
candidates of source hosts while target hosts are selected 
from less loaded hosts during VM placement step [34] uses 
power performance ratio called gear. There are four types 
of gears as preferred, best, underutilized and overutilized 
and 11 gears value corresponding to 11 distinct utilization 
rates from 0 to 100%. If the gear which the server is working 
at is higher than the preferred gears, it means the server is 
overutilized. Otherwise, it is underutilized. Unlike the previ-
ous studies, based on the characteristics of the computing 
node (i.e., 4 different computing nodes Fujitsu, Inspur, Dell, 
and IBM are evaluated), there may not be a utilization rate 
that means overloading. Threshold usage differences of VM 
allocation and migration source/target host detection are 
shown in Table 2.

The objective is to use fewer resources to run the same 
workload at low cost and energy efficiently through con-
solidation. However, when the migration is preferred for 
consolidation, it causes low throughput and extra energy 
consumption since it is a time- and resource-consuming 
process. Therefore, [35] avoids migration of VMs which 
would not recover the energy consumption during migra-
tion. VM selection and VM placement steps become 

Table 1  Bin packing application differences

Problem Bin Type Bin Size Item Method

VM Allocation VM Placement CPU Multi-dimensional Full capacity Optimal utilization rate Task/ VM/ Container Heuristic/Meta-heuristic
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important in terms of ensuring energy efficiency via migra-
tion. If the remaining length of the selected VM is long 
enough to run on target host and the target host is more 
energy efficient compared to the source host, then the 
migration decision is made [31] proposes minimum migra-
tion time policy which selects VM with minimum time 
requirement compared to other VMs on the same host for 
completion of migration process. Other selection method 
proposed in the same paper is based on selection VM with 
the highest correlation of CPU utilization with other VMs 
[36] considers VM on/off operation cost besides data trans-
mission cost. The research calculates performance degra-
dation considering CPU utilization of the selected VM and 
the network distance between source and target hosts [33] 
proposes two VM selection methods called MRCU and 
MPCU which select VMs loaded with more CPU or I/O 
intensive tasks. Because higher memory utilization causes 
more energy consumption of VM migration. VM place-
ment method is based on both maximization of energy effi-
ciency and minimization of SLA violation. Multi resources 
category is not existed for consolidation in Table  2 since 
other resource utilization rate beside CPU is only impor-
tant at VM selection phase, not in source host decision.

Switching idle servers off after consolidation is a com-
monly used technique to save energy. However, deci-
sions to switch servers off without any estimation of the 
future demand can cause additional energy consumption 
depending on the duration of the passive state. The dura-
tion of the passive state is not long enough to save more 
energy than is required to keep the server idle when an 
additional server is required to host incoming requests in 
this interval. When all active servers will be overutilized 
by hosting an incoming workload, switching a new server 
on is an option. However, if the energy consumption of 
switching a new server on is greater than the required 
energy for overutilization, then the incoming workload 
should be allocated to one of the already active servers.

Therefore, the prediction of future workloads becomes an 
important issue for the decision of turning servers on and 
off to save power. The idle and running time periods of serv-
ers and the workload execution time should be observed, 
and the resource usage pattern should be derived from this 

knowledge with an ignorable error rate. A new schedul-
ing algorithm [37] called PreAntPolicy has been proposed 
with a prediction model based on fractal mathematics that 
decides whether to turn servers on/off. However, in this 
algorithm, during the calculation of energy consumption, 
the energy requirements for both VM migration and turn-
ing servers on/off are not considered. The model is based 
on deadline and budget constraints, and the aim is to find 
the best node-workload pair. Another scheduling algorithm 
has been presented based on urgency analysis to schedule 
the real-time workload while defining two static thresh-
olds to decide both urgency and whether to turn a server 
off [38]. However, these decisions are only based on the 
current status of the system without forecasting the future 
demand. The costs of VM migration and turning a server 
on are also not considered, although migration causes addi-
tional costs and prolongs the response time of the workload. 
Similarly, a heuristic workload scheduling algorithm with-
out VM migration based on laxity has been proposed [39]. 
To minimize the number of servers, the method is based 
on postponing the execution of workloads according to the 
deadlines of workloads. Nevertheless, the method does not 
contain a prediction methodology to decide the required 
number of servers. In addition, an optimal resource utiliza-
tion rate is not defined to avoid performance degradation. A 
scheduling algorithm [40] has been built named the Longest 
Loaded Interval First that considers VM migration and the 
energy requirement during the migration transition period. 
The authors of the algorithm emphasized that energy con-
sumption can be reduced by applying a limited number of 
VM migrations. However, a static workload is preferred. A 
workload and prediction mechanism are not considered, 
but prediction methods can also help to decrease the num-
ber of VM migrations for dynamic workloads. The ECTC 
and MaxUtil [41] workload consolidation techniques have 
been compared with their other versions, including the 
migration mechanism. When the remaining execution time 
of workloads is short, the experimental results show that 
techniques using migration do not contribute to power sav-
ings. However, these works have not adopted an adaptive 
decision mechanism or forecasting technique.

Considering the drawbacks of previously proposed 
methods in the literature, an adaptive decision-making 
mechanism that evaluates not only the system’s current 
state, but also seasonal and trend patterns is proposed. 
A novel energy efficient resource management approach 
with no migration is proposed in this research.

Problem definition
This section introduces the workload type, the energy 
model and the obtained problem. The objective of this 
paper is to propose an energy efficient resource alloca-
tion while considering the minimization of performance 

Table 2  Threshold usage differences of energy efficiency 
techniques

Technique Threshold Papers

Allocation Up to fully loaded Single resource [6, 27, 28]

Multiple resources [29]

Up to optimal utilization 
rate

Single resource [26]

Multiple resources [2, 13]

Migration Single threshold Single resource [25]

Multiple thresholds Single resource [31, 33, 34]
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degradation. The model deals with the optimum num-
ber of servers relying on the adaptive optimal utilization 
of hosts with respect to the consumed energy to meet 
dynamic workload requirements based on prediction. 
Many studies in the literature aim to run resources at the 
maximum utilization rate to provide energy efficiency. 
Note that the utilization of resources can be managed 
by introducing new processes to the servers running 
preemptive schedulers. However, under- or overutiliza-
tion of servers causes performance degradation. Each 
resource type has its own optimum utilization rate. In 
addition, turning servers on and off unnecessarily causes 
performance degradation. Workloads can be classified 
according to resource needs. In this study, we address 
computationally intensive workloads. The CPU needs 
of this type of workload are more intense than those of 
other resource needs. The threshold for the optimal uti-
lization rate of the CPU is set at 70% [8]. Through an 
adaptive decision mechanism, the unnecessary turning of 
servers on/off is avoided to increase energy efficiency.

System model
The proposed model consists of three functional modules: 
a monitoring module; a workload placement module, with 
physical and virtual servers; and a forecasting module.

The monitoring module is responsible for observ-
ing the CPU requirement (CR) and execution time (ET) 
of each incoming workload during the last 5  min. The 
processing requirement of each workload Wi is calcu-
lated by multiplying CRi and ETi. The total processing 
requirement (PRtotal) is the sum of submitted workloads’ 
processing requirements in that 5 min interval. The mon-
itoring module transfers the obtained knowledge to the 
forecasting module and the workload placement module.

The forecasting module determines the required num-
ber of processing units (Nr) according to user demand. 
Previously, the forecasting module used PRtotal time series 
to predict future demand. Since PRtotal does not have sea-
sonal patterns and trends, forecasting methodologies, such 
as Holt Winters, ARIMA, support vector regression and 
nonlinear regression, give results with a high error rate. The 
approximated total processing requirements (APRtotal) are 
used to calculate Nr. APRtotal uses the mean value of both 
the CPU requirement and execution time instead of exact 
values. The noise of the PRtotal time series is filtered by using 
the mean value of the parameters. APRtotal is calculated by 
multiplying the number of submitted workloads (NoSW), 
mean execution time of submitted workloads (MET) and 
mean CPU requirements of submitted workloads (MCR) 
in intervals. NoSW, MET, and MCR are forecasted sepa-
rately through forecasting methodologies, namely, Holt 
Winters and ARIMA. Holt Winters gives significantly bet-
ter results than ARMIMA in terms of the Mean Absolute 

Percentage Error (MAPE) for each time series since the 
time series includes seasonality and trend. In addition, 
because the interval is short and the period being forecast 
is long, ARIMA is not the right choice. To use optimal sys-
tem resources (SCtotal indicates the total capacity of a server 
and Th indicates the optimal utilization rate), the following 
equations are used to forecast the required number of pro-
cessing units (SCtotal indicates the total capacity of a server 
and Th indicates the optimal utilization rate).

The forecasting module based on the Holt Winters 
forecasting methodology has an 8.85 error rate.

The workload placement module is responsible for the 
allocation of workloads to suitable VMs and the allocation 
of these VMs to suitable servers. According to the informa-
tion received from the monitoring module and forecasting 
module, decisions about turning a server on/off and the 
placement of incoming workloads are made in this module. 
The designed working model is explained in Energy model.

Energy model
The cumulative energy consumption of a server (E_CSi) 
is equal to the sum of the energy required the switching 
the server off and on (E_OOi) and the energy required for 
the actual service time (E_Seri). It is given by:

The sum of the energy consumption of servers in a data 
center is equal to the total energy consumption of the 
data center (E_CDC), as shown in Eq.  4, where m indi-
cates the number of servers in the data center.

During the service time, the server may run at different 
utilization levels that consume different amounts of power. 
Power consumption figures are published by computer pro-
ducers. Total energy consumption during service time is 
shown in Eq. 5, where t indicates the time spent at a particu-
lar level of processor usage given by Power[j]. Note that the 
power model of the server is based on the utilization level 
which is split into eleven rates from 0 to 100%. For example, 
with the placement of a newly incoming workload, the utili-
zation level of the server can be increased from 10 to 30%. It 
means that the server has never run at 20% utilization level 
and t equals 0 for the Power [2]. The discrete power model is 
used to be compliant with the simulator.

(1)APRtotal = NoSW ∗MCR ∗MET

(2)Nr =
APRtotal

SCtotal ∗ Th

(3)E_CSi = E_OOi + E_Seri

(4)E_CDC =

m
∑

i=0

E_CSi
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In addition, the migration cost is not an ignorable 
parameter when calculating the energy consumption 
of a system. The real energy consumption (ER) can be 
obtained by adding costs of migration and switching on 
to this result, as seen in Eq. 6.

PIi is a special representation of Power[0] of a Server i. 
tidle shows the idle time of Server i. If the required energy 
for switching a server on/off is more than the required 
energy for running the server at idle state for a period, 
then keeping the server in an idle state during that period 
is more energy efficient. The monitoring window is 
decided based on Eq. 7. In the calculated window, keep-
ing a server in the idle state is more energy efficient than 
switching a server on/off to meet the incoming request. 
According to the spec of the selected server in this 
research, the monitoring interval is 5 min.

VM consolidation algorithm
The consolidation algorithm is based on a single thresh-
old to decide whether the server is overutilized. In other 
words, if a server’s CPU utilization ratio exceeds the pre-
defined threshold, then the server is overutilized; oth-
erwise, the server is underutilized. If the utilization of 
the server equals the threshold, then the server is run-
ning at the optimal utilization rate. Unlike other studies, 
overloading detection does not trigger VM migration. 
Overloading is undesirable since it causes performance 
degradation, but it can be acceptable under some condi-
tions. To decide the allocation of incoming workloads, 
this threshold is not a sufficient parameter. In addition 
to the threshold, future demands are also considered to 
be as important as the system’s current state. There are 
two essential trends in the VM Consolidation Algorithm: 
Shrinking and Enlarging. Since the algorithm starts with 
no active server, the default trend in which the system is 
going to enlarge to serve incoming workloads by intro-
ducing new servers is enlarging. The second trend is 
shrinking, in which the number of active servers will be 
reduced because the number of expected workloads can 
be completed with a smaller number of servers than the 
number of existing ones.

All the servers in the system are in the passive (i.e., 
available in the system to be activated upon request) list 
initially. When a request arrives, one of the passive serv-
ers is turned on to meet the requirement. When all the 

(5)E_Seri =

10
∑

j=0

t ∗ Power[j]

(6)ER = E_CDC + NoM ∗MigrationCost

(7)PIi ∗ tidle < E_OOj

allocated workloads on a server are completed, the server 
is added to the idle host list. Then, the server is turned off 
and moved from the idle host list to the passive host list. 
According to the load of the server when it is in an active 
state, it is either on the underutilized server list or over-
loaded server list.

The proposed algorithm also uses a new set of parame-
ters, such as the remaining execution time of a workload, 
active number of servers (Na), required number of serv-
ers (Nr) and efficient utilization threshold. The system 
can be unstable in two cases: (1) Na is greater than Nr, 
which means that there are underutilized servers, caus-
ing energy inefficiency, or (2) Nr is greater than Na, caus-
ing overutilized servers and performance degradation 
when new servers cannot be switched on.

The proposed model to find the most appropriate 
server in terms of energy efficiency, as shown in Algo-
rithm 1, is based on the shrinking or enlarging trend of 
the system. In the shrinking trend, the system has more 
active servers than required for foreseen demand. There 
are three different types of servers from the perspec-
tive of utilization: idle, underutilized and utilized. If the 
number of idle servers equals the difference between the 
number of active servers and the number of required 
servers, then the servers will be switched off. Moreo-
ver, if the number of idle servers to be switched off is 
not sufficient for optimal solution, then a subgroup of 
underutilized servers, and even utilized ones for some 
extreme cases, will also be switched off as soon as their 
respective ongoing workloads are completed. To support 
the shrinking trend when a workload is submitted, the 
workload is assigned to the most suitable active server 
instead of activating a new server for the workload. The 
most suitable server selection algorithm starts with find-
ing the longest remaining execution time of the running 
workloads among underutilized servers. Table  3 pro-
vides a list of main symbols and their meanings in the 
algorithms.

The selection of the server with the highest remain-
ing time for the existing workloads (Algorithm 2) makes 
it possible to overlap the execution time of the newly 
arrived workload with it. Therefore, the newly arrived 
workload is expected to be completed after the comple-
tion of the existing workloads in the worst case. If there is 
more than one suitable server, then an additional param-
eter called minimum violation is used to decide the most 
appropriate one. The efficient utilization rate of the CPU 
is determined to be 70% for energy efficiency. Given that 
70% is the optimal value, a range between 65 and 75%, 
whose mid-value is 70%, is accepted as the energy effi-
ciency range. Minimum violation is the most approxi-
mate utilization rate to the efficient utilization rate when 
the incoming workload is assigned to them.
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In the example in Fig.  1, the number of active servers is 
more than the future demand; therefore, the number of 
active servers should be decreased. Assuming that these 
two servers from the active server set have been selected to 
be turned off, the server with the highest remaining time is 
selected for the incoming workload W4. If W4 is allocated 
on Host 1, then it prolongs the time in standby of the server. 

Conversely, when W4 is allocated on Host 0, it does not cause 
the same issue. The cost of running the same server with the 
same resource requirement is not considered in this study.

If there is not a suitable server to host the new work-
load according to the parameters of the highest remain-
ing time and minimum violation, the search algorithm 
is conducted among servers and will be overloaded after 
the assignment. Running in the overloaded state causes 
performance degradation in terms of response time and 
throughput. In addition, switching a new server on to 
meet short-term needs can cause redundant energy con-
sumption when the systems trend is considered. There-
fore, the proposed approach is based on the selection 
of the most suitable server from the set of active serv-
ers instead of switching a new server on. The temporar-
ily overloaded state is acceptable when the system has a 
number of active servers that is greater than the required 
number of servers for future demand, i.e., the system is 
in a shrinking trend. To reduce the running time of the 
selected server in the overloaded state, the workload with 
the shortest remaining execution time according to the 

Table 3  List of the main symbols and their meanings

Symbol Meaning

S Set of servers where S , Si ∈ S , i = {1, . . . , n},i ∈ N

RC[Si] Remaining capacity of Si
UR[Wnew] Utilization requirement of Wnew

TU[Si] Total utilization of Si
Wi,j   Wj ∈ W running on Si j = {1, . . . ,m},m ∈ N

VMi,k   VMk ∈ VM on Sik = {1, . . . , z},z ∈ N

max(RTWi,j ) Maximum remaining time of existing workloads

min(RTWi,j ) Minimum remaining time of existing workloads

ET[Wnew] Execution time of Wnew
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optimal utilization rate after assignment should be run, 
as described in Algorithm 3. The shortest remaining time 
of existing workloads is not the only parameter used. The 
utilization rate of the server with the shortest remain-
ing time is another parameter to be considered. When 
the workload is finished, the utilization rate of the server 
should approximate the optimal utilization rate. In addi-
tion, the minViolation parameter is used to ensure that 
the server is up to 100% utilization.

In Fig.  2, W0 and W1 are running in Host 0, while 
W2 and W3 are running in Host 1. W4 is newly arrived 
with a 30% utilization requirement, and rt4 shows that 
the remaining time of W4 is equal to its execution time. 
When the new workload is allocated on either Host 0 or 
Host 1, it causes performance degradation since the utili-
zation rate will exceed the optimal utilization threshold. 
The least remaining time on Host 0 is rt1 of W1, and rt3 
is the shortest remaining time of Host 1. The servers are 

compared to decide which server is the most appropriate 
in terms of the least performance degradation. However, 
in the example shown in Fig.  2, the shortest remain-
ing times on Host 0 and Host 1 are equal. Therefore, the 
decision is made according to the utilization rate. For this 
case, looking at the further utilization rate when W1 and 
W3 are finished, Host 1 will be well utilized while Host 0 
will be overutilized. Therefore, Host 1 is selected for the 
placement of W4.

In the enlarging trend, if Na is less than Nr, then a desti-
nation host is investigated from the underutilized server 
list to be well utilized when the server is allocated for the 
workload. If there is no suitable server among the under-
utilized servers, then the idle server list is checked to 
determine whether the list is empty. If the idle server list 
is not empty, then one of the idle servers is used to run 
the workload. Otherwise, a server from the passive server 
list is switched on.
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The algorithm is based not only on the current state 
of the system but also on future demands, as described 
below. The number of incoming workloads is forecasted by 
using different methodologies: Holt Winters and ARIMA.

Performance evaluation
Experimental setup
The algorithm is implemented and evaluated in Cloud-
Sim, which is commonly preferred in the literature 
since it provides a fair comparison between proposed 

algorithms and previous approaches and is easy to adapt 
and implement. However, workloads enter the system 
in a static manner, and the usage rates of the works vary 
depending on time. Our algorithms provide dynamic 
submission. Therefore, to make a fair comparison, 
the benchmark code is modified to meet the dynamic 
requirements by working with Google Cluster Data via 
MongoDB integration.

It is assumed that the cloud data center consists of 
homogeneous servers. Initially, only the processor is 

Fig. 1  Example allocation of HRT

Fig. 2  Example allocation of LRT
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considered in terms of the resource type of energy con-
sumption. The power consumption of selected server 
with respect to the utilization rate is shown in Fig. 3. HP 
Proliant XL170R G9 Xeon 2670 G4 includes 2 × 128 GB 
Ram, Intel Xeon 2670, 2 × 12 cores × 2300  MHz. The 
power spec of the server is shown in Fig. 3. In addition, 
based on the experiments conducted with TÜBİTAK 
B3 Laboratory, the energy consumption for switching 
the server off and on (E_OO) is measured as 0,019kwh. 
The result is obtained as an average of 5 times measure-
ment as shown in Fig. 4. Shut down period takes 36 s and 
consumed 3600ws. The time it takes for the server to be 
ready to operate after the power has been turned on is 
248  s and energy consumption for boot time is around 

64000ws. As shown in Fig.  4, during boot time, power 
consumption is increased until 336  W which is almost 
the power at 30% utilization of the server according to 
the server’s spec and then it is decreased to the power at 
idle state of the server. The model presented in Eq. 8 can 
be used to calculate approximately value of E_OO for any 
server.

Each workload request is allocated on a virtual 
machine (VM). The VM types are Amazon EC2 instance 
types: Extra Large Instance (2000 MIPS, 3.75 GB); Small 
Instance (1000 MIPS, 1.7 GB); and Micro Instance (500 
MIPS, 613  MB). Initially, the most appropriate VM is 

(8)EOO =
(

t1 − t0) ∗ P
idle

+ (t2 − t1) ∗ P
20% + (t3 − t2) ∗ (P

20% + Pidle

)

∕2

Fig. 3  Power consumption of HP Proliant G9 at different load levels round dot plot– log(power consumption), line plot – actual power 
consumption

Fig. 4  Energy Consumption of E_OO
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allocated for the incoming workload with the resource 
requirements defined by the VM types. Then, VMs utilize 
less resources according to workloads [30].

Workload characteristics
Google published trace data on a cluster of approximately 
12.5  k machines including 29  days of cell information 
from May 2011. A cell means a set of machines sharing 
a common cluster-management system. A job consists 
of one or more workloads. Google shared the trace data 
through six tables: machine events, machine attributes, 
job events, workload events, workload constraints, and 
resource usage. In the scope of this paper, the workload 
event table is used. The workload event table consists 
of timestamps, missing info, job ids, workload indexes, 
machine ids, event types, usernames, scheduling classes, 
resource requests for CPU cores, RAM and local disk 
space and different-machine constraints. Timestamps 
are in microseconds. Event types have different values, 
such as submit, schedule, finish and fail. The submitted 
workloads are used as inputs into the proposed schedul-
ing algorithm. The interval of utilization measurements 
was decided as 5 min. The sum of incoming workloads in 
each 5 min was used.

The model that we used to compare with our pro-
posed model is based on the VM migration technique 
[30–32]. This model does not use a static threshold to 
detect overloading. The threshold is changed during 
runtime according to historical data about the load of the 
host. The historical data are used in various ways. One 
of the ways is averaging the historical data according to 
the median absolute deviation (MAD). Other than the 
MAD, three methods are used: interquartile range (IQR), 
local regression (LR) and local regression robust (LRR). 
After the overloading detection step, the VM is selected 
to migrate. Several approaches have been suggested to 
select the VM, such as maximum correlation (MC), mini-
mum migration time (MMT), minimum utilization (MU) 
and random selection (RS) [16]. According to experi-
ments, LR-MMT provides the best results. Therefore, we 
compared our proposed model with LR-MMT. The pro-
posed algorithms for LR-MMT are included in the power 
package part of CloudSim. The power package is based 
on static allocation. To compare the proposed model, the 
power package is extended to meet dynamic workload 
submission.

Performance metrics
The number of Hosts Shutdown (NoHS), Number of 
Received Workloads (NoRW), Energy Consumption (EC) 
and Number of Migrations (NoM) are used as key per-
formance metrics in the migration model to which we 
compare our proposed approach. Our approach does not 

contain a migration step. Therefore, the number of VM 
migrations becomes zero in this paper. The number of 
active servers is less than the migration model according 
to the experimental results. If there is already a place on 
an active server, then a new server will not be awakened. 
Moreover, energy consumption due to the number of 
active servers and the number of unnecessary migrations 
can be reduced through the proposed approach.

Simulation results and analysis
The forecasting module is based on Holt Winters, as 
described before. Therefore, the approach is named LAA-
HW. If we knew the actual values instead of forecasted 
values, then the system gives the optimal result as LAA-
O. The proposed model uses Na and Nr parameters to 
decide whether the system has more active servers than 
required. If Na is greater than Nr, then incoming work-
loads are allocated on already active servers. The mean 
CPU requirement of a day and the mean execution time 
of a day in the Google Trace logs are 3% and 1,13  min, 
respectively, leading to a small Nr value and causing 
less received workloads in LAA compared to LR-MMT. 
These requirements cause bottlenecks for workloads 
with short execution times and fewer CPU requirements. 
The number of migrations is zero in our approach. The 
energy consumption for switching on/off in our model 
is less than that in the migration model. As described 
in System model, the energy consumption is the sum of 
required energy for computing the workload, migration 
and switching on/off decision. Each migration consumes 
0,05 kwh [42]. Each E_OO consumes 0,019 kwh accord-
ing to the lab experiments. The comparison results are 
shown in Table 4. LR-MMT does not have a forecasting 
module. The host shutdown decision is made by consid-
ering only the system’s current state. Therefore, the num-
ber of hosts shut down in LR- MMT is greater than in 
any type of LAA. LAA-O gives the best result in terms 
of energy consumption, and it also gives better results for 
NoRW than LAA-HW. This is because LAA-O knows the 
incoming CPU requirements of the workload, instead of 
forecasted the values belonging to the workloads.

To ensure the robustness of the proposed algorithm, 
sensitivity analysis is performed by increasing the execu-
tion time by multiplying by 10, 100 and 1000. According 
to the results, the experiment with the longest execution 

Table 4  Comparison results

NoRW EC (kwh) NoM NoHS

LR-MMT 34,838 3344,26 6036 8563

LAA-HW 23,945 1300,92 - 3125

LAA-O 26,538 1200,59 - 2716
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time gives the best result since a longer execution time 
requires a higher server open time and a higher number 
of active servers. The longest execution time overcomes 
the bottleneck of the small value of Nr.

LR-MMT gives a similar number of received workloads 
under different execution time values, unlike LAA-HW 
and LAA-O, as seen in Fig.  5. The numbers of received 
workloads by both LAA-HW and LAA-O are increased 
under extended execution time since longer execution 
times require a greater number of active servers.

In Fig.  6, the mean energy requirement to complete 
a workload is shown. The mean energy requirement is 
calculated by dividing the total energy consumption by 
the number of received workloads. LAA gives the opti-
mal result with workloads of approximately 10  min 
since both high throughput and energy efficiency can 
be provided without turning a new server on. When the 
workloads remain as they are, the forecasted Nr value is 
small. Because of the lower number of active servers, the 
received number of workloads is low. On the other hand, 
the increase in the execution time of workloads causes an 
increase in the number of active servers. However, the 
proposed algorithms are based on the remaining time of 
already running workloads. A long execution time means 
a longer remaining time at any time. It is difficult to find 
the appropriate server from active servers with the least 
remaining time algorithm. Therefore, the only option is 
turning a new server on to meet the requirements, which 
gives rise to the need for an increment of the number of 
servers. With the increment of the number of active serv-
ers, the number of received workloads is also increased, 
but it causes significant energy consumption per work-
load since energy consumption and the number of active 
servers is directly proportional.

In addition, the experiment was conducted with first 
fit, best fit and worst fit algorithms to make comparisons 
in terms of the execution time for the same workloads. 
These algorithms are implemented as nonpower aware 
(NPA) algorithms. These algorithms consider CPU uti-
lization requirements. First fit allocates the workload on 
the first hole that is large enough by scanning from the 
beginning. Best fit allocates the workload on the smallest 
hole that is large enough and produces the smallest lefto-
ver hole. Worst fit allocates the workload on the largest 
hole that is large enough and produces the largest lefto-
ver hole, which may be more useful than a leftover hole 
from a best fit approach. Figure 7 shows the mean execu-
tion time results in milliseconds belonging to the related 
algorithms to find appropriate place among search pool 
for single workload. It does not show the time the entire 
simulation takes to complete whole workloads. The first 
fit algorithm is the fastest algorithm among these three 
algorithms because it searches as little as possible. The 
best fit and worst fit algorithms show similar results, 
almost 25 times slower than the first fit algorithm. The 
NPA algorithms – first fit, best fit and worst fit and 
LR-MMT – started with 800 active hosts in the experi-
ments. Then, according to the system’s trend, the num-
ber of active hosts was decreased by shutting idle hosts 
down. LR-MMT searches for the most appropriate host 
among a host list that does not contain overutilized serv-
ers. Therefore, the execution time of the LR-MMT algo-
rithm is affected by both changes in workloads on servers 
and the number of active servers. If the number of active 
servers decreases, then the search pool decreases. The 
results of the sensitivity analysis show that when the 
execution time of workloads increases, the number of 
running workloads in parallel increases, which causes 

Fig. 5  Sensitivity analysis results for number of received workloads orange – LR-MMT, gold – LAA-HW, green – LAA-O
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overutilization and decreases the size of the search area 
and execution time of the search algorithm. It starts with 
similar performance to the best fit and worst fit algo-
rithms, and the execution time of the algorithm decreases 
to one-third as a result of the increased execution time of 
workloads with sensitivity analysis. The execution times 
of the NPA algorithms remain similar during the simula-
tion period because the search area consists of all active 
servers. The LAA algorithm starts with 800 passive hosts 
and has discrete sets as the overloaded server list and the 
underutilized server list with a value of 0 at the beginning 
of the simulation. Based on the system’s trend, shrink-
ing, or enlarging, the search algorithm starts with the 
related server list or the passive or underutilized server 
list. The overloaded server list is only used for exclusion, 
which means that the search area becomes larger as the 

number of underutilized servers’ increases. The LAA 
starts with 4 times the execution time of the first fit algo-
rithm, but with the increasing number of underutilized 
servers, it starts to give similar results to the best fit and 
worst fit algorithms. As explained in the problem defini-
tion section, the monitoring interval is selected as 5 min. 
The mean execution time of a day in Google tracelog is 
1.13 min which is smaller than the monitoring window. 
It means existing workloads are completed until next 
monitoring time comes. Therefore, Na and Nr has small 
values during the simulation time and the search pool 
consists of a small number of resources. If the lengths of 
the workloads are longer than the monitoring interval, 
then Na and Nr are increased and so does the completion 
time of the algorithm is increased. Approximately 10 min 
lengths workloads which LAA gives the optimal results 

Fig. 6  Sensitivity analysis results for mean energy consumption per workload orange – LR-MMT, gold – LAA-HW, green – LAA-O

Fig. 7  Sensitivity analysis results for mean execution time of algorithms orange – LR-MMT, gold – LAA, green – FF, brown – BF, dark yellow – WF
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of both energy efficiency and throughput with, also gives 
acceptable result in term of the completion time of the 
algorithm.

Conclusion
Energy efficiency in cloud environments has received 
significant attention in the past few years because of 
the increasing usage of system resources with develop-
ing technology and decreasing prices. To handle energy 
inefficiency, common resource provisioning and running 
servers at an optimal utilization rate through VM migra-
tion have been proposed to reduce energy consumption 
on cloud infrastructures. However, running at the opti-
mal utilization rate may require turning a new server on 
to meet the requirement of incoming workloads, and it 
consumes more energy than is consumed due to the 
performance degradation from allocating the incoming 
workload on already active servers that are at optimal 
utilization rates. Moreover, VM migration also consumes 
energy and causes execution delays since time is needed 
for VM migration.

In this paper, the proposed model focuses on the open 
issues of the research in the literature. VM migration and 
the unnecessarily switching of servers on/off cause addi-
tional energy consumption. In addition, completing a 
workload with the migration overhead consumes more 
energy since it takes more time. Therefore, to avoid migra-
tion by optimizing the placement of new requests well and 
to avoid unnecessarily switching servers on/off, the pro-
posed approach uses prediction methodology. Holt Win-
ters is preferred as a forecasting technique because of its 
suitability to time series. Furthermore, most approaches 
in the literature propose using resources at the optimal 
utilization rate since over- and underutilization cause 
energy inefficiency. However, this means increasing the 
number of required resources, leading to more energy 
consumption. Based on this motivation, we propose an 
adaptive approach for VM placement without VM migra-
tion. The most important contribution is preventing VM 
migrations while considering the remaining time of run-
ning workloads. Optimum utilization is a significant fac-
tor in providing energy efficiency. However, even if its 
load will exceed the optimum utilization rate, allocation of 
a workload to an already active host instead of allocation 
of the workload to a new server should be preferred under 
some circumstances. We propose an adaptive decision-
making approach to energy efficient allocation without 
migration. We consider not only history but also future 
demands and the remaining time of running workloads. 
To determine the systems behavior for workloads with 
longer execution times, sensitivity analysis is performed. 
The real execution times of workloads are extended by 
multiplying by 10, 100 and 1000 to perform the sensitivity 

analysis. A short execution time means a lower process-
ing requirement and a smaller value for Nr. However, it 
causes bottlenecks and fewer received workloads than 
with LR-MMT. When the execution times of work-
loads are increased, Nr is increased. Thus, the number of 
received workloads is increased compared to LR-MMT. 
In this manner, the energy consumption decreases with 
the proposed algorithm and VM migration overheads are 
avoided. In addition, the system performance in terms of 
energy efficiency and throughput is better than LR-MMT 
for longer execution times.

In this paper, we focus on CPU intensive workloads. 
We plan to extend the proposed approach to work with 
workloads based on other system resources apart from 
CPUs, such as networking components, I/O devices and 
storage.
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