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Abstract

The Unrelated Parallel Machines Scheduling Problem (UPMSP) with sequence-dependent setup times has been
widely applied to cloud computing, edge computing and so on. When the setup times are ignored, UPMSP will be a
NP problem. Moreover, when considering the sequence related setup times, UPMSP is difficult to solve, and this
situation will be more serious in the case of high-dimensional. This work firstly select the maximum completion time
as the optimization objective, which establishes a mathematical model of UPMSP with sequence-dependent setup
times. In addition, an improved firefly algorithm with courtship learning is proposed. Finally, in order to provide an
approximate solution in an acceptable time, the proposed algorithm is applied to solve the UPMSP with
sequence-dependent setup times. The experimental results show that the proposed algorithm has competitive
performance when dealing with UPMSP with sequence-dependent setup times.

Keywords: Firefly algorithm, Courtship learning, Unrelated parallel machines scheduling, Makespan,
Sequence-dependent setup times

Introduction
The classical parallel machine scheduling problem
(PMSP) widely exists in scientific and industrial produc-
tion [1], including printed circuit board manufacturing
[2], semiconductor wafer manufacturing dicing opera-
tions [3], computer multiprocessors task scheduling [4]
and heterogeneous clusters scheduling [5], which has
received extensive attention from researchers. However,
in some applications, such as cloud computing [6] and
edge computing [7], setup times such as waiting time for
job sorting and job data transmission time are usually
involved. In addition, due to the heterogeneity of devices,
quite a few types of jobs also have sequence dependen-
cies (such as Spark). This kind of problem is called the
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unrelated parallel machines scheduling problem (UPMSP)
with sequence-dependent setup times [1].
In recent years, the research on UPMSP and its variants

has received extensive attention. In UPMSP, the objective
of optimization is usually to minimize the maximum com-
pletion time. Most of the UPMSP problems deal with the
parallel scheduling, which requires the use of two or more
machines. The UPMSP whose setup times depend on the
sequence has the nature of non-deterministic polynomial,
which makes it difficult to solve. Some precise algorithms
have been proposed to solve the UPMSPs when the setup
times are ignored, such as the branch and bound algo-
rithm [8, 9], the cutting plane algorithm [9], etc. Neverthe-
less, due to the time-consuming characteristics, precise
algorithms cannot be well applied to high-dimensional sit-
uations. For the case of high-dimensional, meta-heuristic
algorithms are more considered to be adopted as they can
find feasible solutions more efficiently and stably within
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an acceptable time range. However, the performance of
these algorithms will decline in high-dimensional cases.
In addition, Firefly Algorithm with Courtship Learn-

ing (FACL) is a variant of Firefly Algorithm (FA) [10],
which shows efficient performance in continuous numer-
ical optimization problems, including high-dimensional
cases [11]. This algorithm has the advantages of fewer
hyper parameters and easy implementation. Therefore, we
try to apply the FACL to solve the UPMSP with sequence-
dependent setup times. However, the male and female
attraction factors used by FACL decrease rapidly dur-
ing search process, which makes it easy to terminate the
search early and fall into the local optimal problem.
Aiming at the above problems, this work proposes

an Improved Firefly Algorithm with Courtship Learn-
ing (IFACL) to solve the UPMSP with sequence depen-
dent setup times. Firstly, we propose an effective tech-
nique for solving UPMSP with sequence-dependent setup
times, that is, the proposed IFACL. Secondly, a new
attraction factor based on Cauchy distribution is used
to improve FACL’s search ability. Moreover, we use a
two-stage solution representation method in combination
with the UPMSP with sequence-dependent setup time.
Without introducing additional parameters, the search
performance of male firefly in courtship learning stage
is enhanced, so that the algorithm can make full use of
the social information of population. Therefore, the abil-
ity of the algorithm to jump out of the local optimum is
enhanced, and the global search performance is improved.
Finally, a lot of simulation experiments have been carried
out to evaluate the effectiveness of the IFACL in solving
UPMSP with sequence-dependent setup times.
The remaining sections of this work are constructed

as follows. “Related work” section presents the related
work. The UPMSP mathematical model is given in
“Mathematical modeling” section. “UPMSP based on fire-
fly algorithm with courtship learning” section presents
the proposed IFACL for UPMSP in detail. “Simulation
experiment” section shows the experimental results
and discussion. Finally, a conclusion is provided in
“Conclusion” section.

Related work
Recent research on UPMSPs
In the past few years, some progress has been made
in solving this challenging problem. Few exact search
algorithms have been applied to UPMSP with sequence-
dependent setup times. The model proposed by Guinet
[12] is the basis of other Mixed Integer Linear Program-
ming (MILP) methods, although optimality can only be
guaranteed in small instances. In Vallada and Ruiz [13],
an improved method was proposed for the weighted
earliness-tardiness minimization model proposed by Bal-
akrishnan et al. [14]. As far as we know, this model greatly

reduces the number of binary variables, and has not been
used in the makespan target before. Rocha et al. [15]
developed a branch and bound algorithm to solve the
UPMSP with the sequence-dependent setup times, which
achieved better results in the cases of low dimension. It
is only in recent years that optimal solutions for larger
UPMS instances have been obtained. Avalos Rosales et
al. [16] proposed a MILP that can effectively solve some
instances of up to 60 jobs and 8 machines. In some itera-
tive algorithms proposed by Tran and Beck [17] and Tran
et al. [18], a similar MILP was once the main problem.
Since precise algorithms have not been proven effective

in real-life examples of solving this problem until recently,
some meta-heuristic algorithms have been developed to
solve the UPMSP with sequence-dependent setup times.
One of themeta-heuristic algorithms used to deal with the
UPMSP with sequence-dependent setup times is the Vari-
able Neighborhood Search (VNS) [19]. De Paula et al. [20]
firstly used VNS to solve high-dimensional UPMSP with
sequence-dependent setup times, which is to minimize
task completion time andweighted delay. Vallada and Ruiz
[21] proposed a genetic algorithm (GA) based on the local
search enhanced crossover operator to solve the UPMSP,
which is to minimize the task completion time. And they
also considered the influence of the sequence depen-
dent setup time between machines and jobs. Behnamian
et al. [22] proposed a hybrid meta-heuristic algorithm
that combines Ant Colony Optimization (ACO), Simu-
lated Annealing (SA), and VNS algorithms to solve the
UPMSP that also considers the sequence-dependent setup
times, so as to minimize the task completion time. ACO is
another meta heuristic algorithm that successfully applied
to UPMSP with sequence-dependent set times. Arnaout
et al. [23] proposed an enhanced ACO algorithm to solve
the UPMSP with sequence-dependent setup times in the
case of 10 machines and 120 jobs. Ezugwu and Akutsah
[24] implemented an improved Salp Swarm Algorithm
(SSA), and obtained the new complexity result of the
sequence-dependent UPMSP algorithm. Niu Qun et al.
[25] realized the parallel machine scheduling with adjust-
ment time based on the improved clone selection algo-
rithm, and it has a better performance compared with GA
and the basic clone selection algorithm (CSA).

Standard firefly algorithm
Firefly Algorithm is a simple and efficient swarm intelli-
gence algorithm for solving complex optimization prob-
lems in continuous search space. The flashing and attract-
ing behavior of fireflies is crucial to their evolution. A
firefly with a high brightness will attract a firefly with
a darker brightness, and the brightness of each firefly
depends on its light intensity, that is, the fitness of the
objective function. The flashing brightness (the degree of
mutual attraction) of fireflies can be expressed as follows:
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βi,j(ri,j) = β0 × e−γ r2i,j . (1)

where ri,j is the Euclidian distance between two fireflies
xi and xj, and β0 represents the initial attraction fac-
tor, which is usually 1. Parameter γ is the fixed value of
the light absorption coefficient, which is usually also 1.
For two fireflies xi and xj randomly selected in the same
search space, the distance ri,j between them is calculated
as follows:

ri,j = ∥
∥xi − xj

∥
∥ =

√
√
√
√

D
∑

d=1
(xi,d − xj,d)2. (2)

where D represents the dimension of the problem, and d
represents the d-th dimension of the position vector of the
firefly.
During the search, firefly xj is attracted to the brighter

firefly xi and moves towards xi. Its position is updated as
follows:

xj(t + 1) = xj(t) + βi,j × (xi(t) − xj(t)) + α × ε. (3)

where, t represents the number of iterations of the algo-
rithm, α is the step size parameter, which is usually a
random number with the value of [ 0, 1], and ε is a random
number between [−0.5, 0.5].
In the optimization process of FA, all fireflies will move

to the brighter firefly, and finally the firefly individuals will
gather around the firefly with the highest brightness to
complete the optimization process.

Mathematical modeling
Problem description
The UPMSPwith sequence-dependent setup times, which
is considered and proposed based on the improved firefly
algorithm of courtship learning, is described as follows:

– The scheduling problem assumes that there are N
available jobs to be allocated to M unrelated
machines for processing at time zero, and the
machines are independent of each other.

– There is no preemptive execution.
– The data set, including the time required for machine

k to process assigned job j represented by Pj,k and the
sequence-dependent setup times of processing job j
after job i on machine k given by Si,j,k , are priori and
determined. Among them, i, j = {1, 2, ,N},
k = {1, 2, ,M}, usually Si,j,k �= Sj,i,k .

Model construction
This work uses a model based onMixed Integer Program-
ming (MIP) [1, 3, 21] to represent the (Pj,k|Si,j,k|Cmax)
model, which is convenient to minimize the maximum
completion time (Cmax). In order to describe the mathe-
matical model of this problem, Table 1 gives some symbol
definitions.

Table 1 Symbol definition

Symbol Definition

Cj The completion time of the last job j on the
machine

Cmax The maximum completion time, namely
makespan

xi,j,k When job j is processed immediately after
job i is processed on machine k,

it is 1; otherwise 0

x0,j,k If machine k processes job j first, it is 1;
otherwise 0

xi,0,k If job i is the last one to be processed on
machine k, it is 1; otherwise 0

V A sufficiently large positive number

Si,j,k + Pj,k Corrected machine processing times matrix

Based on the symbol definition in Table 1 above,
this article establishes a mathematical model of
(Pj,k|Si,j,k|Cmax), as shown below.

minimize Cmax (4)

s.t.
M

∑

k

N
∑

i=0
i�=j

xi,j,k = 1, ∀ j = 1, · · · ,N ; (5)

N
∑

j
x0,j,k = 1, ∀ k = 1, · · · ,M; (6)

N
∑

i=0
i�=h

xi,j,k −
N

∑

j=0
j �=h

xh,j,k = 0, ∀ h = 1, · · · ,N ; (7)

Cj −
[

Ci +
M

∑

k=1
xi,j,k(Si,j,k + Pj,k)+

V
( M

∑

k=1
xi,j,k − 1

)]

≥ 0, ∀ i = 0, · · · ,N ; (8)

Cj ≤ Cmax, ∀ j = 1, · · · ,N ; (9)
C0 = 0; (10)
Cj ≥ 0, ∀ j = 1, · · · ,N ; (11)
xi,j,k ∈ {0, 1}, ∀ i = 0, · · · ,N ; ∀ j = 0, · · · ,N ;

∀ k = 1, · · · ,M. (12)

where, the goal of formula (4) is to minimize the max-
imum completion time, the constraint in formula (5)
ensures that the job will be executed only once, the con-
straint (6) indicates that the number of jobs to be pro-
cessed first by eachmachine is 1, the constraint in formula
(7) ensures that each job is processed first or constructed
into a tight post-processing job of other jobs, the formula
(8) is used to calculate the completion time of each job,
and the formula (9) defines Cmax as having to be greater
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than the completion time of any other job. The constraint
(10) ensures that the completion time of virtual job 0 is
0, the constraint (11) ensures that the completion time of
the job is not negative, and the constraint (12) defines the
value range of decision variable x.

UPMSP based on firefly algorithmwith courtship
learning
Firefly algorithmwith courtship learning
Given that fireflies attract mates in nature by glowing,
interaction and information sharing between males and
females is important. However, the standard FA algorithm
does not distinguish the gender of individuals in the pop-
ulation and cannot effectively use the gender information
of fireflies, which restricts the global search of FA in the
presence of a large number of local extreme points.
FACL is based on the original FA algorithm, by adding

a courtship learning mechanism to promote population
information interaction and communication, and guide
fireflies to fly, thereby enhancing the algorithm’s ability to
jump out of the local optimum. The courtship learning
process is: the male fireflies in the population select their
mates from the female firefly’s external archive (A) and
generate better solutions to improve the performance of
the algorithm. The four key aspects of this mechanism are
described as follows:
(1) Scaling mechanism. In order to make full use of the

female firefly information in external archive A, individu-
als with lower fitness are more likely to be selected from
external archive A. In this section, each female firefly in
external archive A is scaled according to its fitness. The
proportion transformation process of each female firefly
is as follows:

Ri = 1
f (Xi)

, ∀ i = 1, 2, · · · ,Np. (13)

where Np represents the archive size, which can be the
same size as the male firefly population; f (Xi) represents
the fitness of the i-th female firefly. Therefore, the female
firefly with the lowest fitness in the external archive A has
the largest estimation standard.
(2) Selection probability. After scaling the females in

external archive A, the selection probability is designed to
select the females. The selection probability is calculated
as follows:

pi = Ri

(
Np∑

j=1
Rj)

, ∀ i = 1, 2, · · · ,Np. (14)

where pi represents the probability of selecting the i-
th female firefly. The selection mechanism ensures that
female firefly individuals with lower fitness have higher
selection probability.

(3) Female individual selection. If the selection is always
based on the value order without the probability selection,
FA is easy to fall into the local optimum, and it is diffi-
cult to achieve the global optimum search. Therefore, after
calculating the selection probability of each female firefly
by formula (14), the roulette strategy is used to select the
female firefly individual to avoid the local optimum.
(4) New movement formula. According to formula (1),

the attraction factor βi,j decreases with the increase of dis-
tance. In FA, when the brightness of the selected male
firefly xj is higher than the brightness of the current male
firefly xi, there will be no movement operation in this iter-
ation; When the brightness of the selected male firefly xj
is lower than the brightness of the current male firefly xi,
the current male firefly xj will perform a movement oper-
ation according to Eq. (15). However, when the distance
between the two fireflies is large, the attractive force is
extremely low (as shown in Fig. 1a, which can easily lead
to the premature termination of the movement process,
and an ideal solutionmay not be obtained. For this reason,
a new movement operation is adopted in FACL to handle
this situation, which is defined as follows:

xj(t + 1) = xj(t) + vk,j × (xk(t) − xj(t)) + α × ε. (15)

where xk is the currently selected female firefly individual,
and xj is the currently selected male firefly individual with
higher brightness. v is the newly defined male and female
attractiveness factor, which is defined as follows:

vk,j =
( rk,j
800

)

× logsig
(

(−βk,j)
t

600
)

× e−γ r2k,j . (16)

In the above formula, logsig(.) represents a logistic
regression function with a range of [ 0, 1], and t repre-
sents the number of iterations. In formula (15), v is used
to replace the parameter β in formula (3) to maintain the
attractiveness between male and female firefly individuals
within a certain distance r, which improves the proba-
bility of finding a better solution. The male and female
attractiveness factor v defined by formula (16) is shown in
Fig. 1b, where, based on the consideration of control vari-
ables, the maximum number of iterations of 1000 is taken
as the value of t.

Improved firefly algorithmwith courtship learning
A careful analysis of the variation curve of male and
female individual attraction factor v introduced in FACL
algorithm with the distance r between male and female
fireflies in Fig. 1b shows that the substitution of v to some
extent improves the situation that β decreases rapidly to
nearly 0 with the increase of r and the attraction between
fireflies decreases rapidly. However, when r increases to a
certain extent (near r=1), at this time, the attraction fac-
tor of male and female will decrease again rapidly, and the
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Fig. 1 The relationship between the three different attracting factors and distance r. For Fig. 1a, β0=1, γ =1; for Fig. 1b, β0=1, γ =1, tmax =1000

information interaction between male and female individ-
uals is no longer possible. What’s more, compared with
the random term (α×ε) in formula (15), v is actually a very
small value, which makes it difficult for male and female
fireflies to interact and exchange information. Hence, the
random term α × ε has a greater impact on the position
update process, which degenerates into a random walk
operation and is not conducive to the fast search of the
optimal solution, especially in the discrete case. Therefore,
although FACL still has a certain ability to jump out of the
local optimum, it cannot search for the optima quickly.
Based on the above analysis, this work proposes a fire-

fly algorithm based on FACL framework to improve male
and female attraction factors. The algorithm introduces
the Cauchy distribution function as the new attractiveness
factor f to ensure that a certain attractiveness can be guar-
anteed when the distance r is far, so that the male firefly
individual can still maintain a certain information inter-
action ability with the female firefly individual, continue
to move in courtship behavior to ensure a certain ability
to jump out of the local optimum, thereby improving the
global search ability. This algorithm not only maintains
the original simple structure of FACL, but also improves
the accuracy of optimization.
As a new attraction factor, Cauchy distribution function

has the characteristics similar to Gaussian distribution,
but the peak value at the origin of Cauchy distribution is
smaller and the distribution at both ends is longer. This
characteristic is easy to generate random numbers with a
large distance from the origin, so as to avoid the situation
that the attraction rapidly decreases to nearly 0 when r is
too large [26]. In this way, the individual male firefly can
keep the interaction and movement of population infor-
mation towards the female when the distance is large, and
can jump out when trapped in the local optimum. The
new attractiveness factor f is defined as follows:

f = Cauchy(0, 1). (17)

where Cauchy(0,1) represents a random variable subject
to the standard Cauchy distribution, defined as follows:

fk,j = 1
π(r2k,j + 1)

. (18)

According to the above definition, the curve of the
attraction factor f of male and female fireflies in the
IFACL with the distance r between the male and female
fireflies will be a shape with a wide distribution, a gentle
falling speed, and a non-zero end. Both the FA attrac-
tion factor β and the male and female attraction factor
v in FACL have a better chance of searching for a better
solution. The change curve of f is shown in Fig. 1c.
Therefore, by introducing the new male and female

attraction factor f into Eq. (15) to replace v, the movement
formula of male firefly courtship learning from female
firefly in IFACL algorithm is as follows:

xj(t + 1) = xj(t) + fk,j × (xk(t) − xj(t)) + α × ε. (19)

Based on the above definition, the complete search
process of the IFACL is illustrated as Algorithm 1.
The implementation of this additional female archiving

mechanism in this article is simple. When it is time to
update the female archive, choose the brighter firefly as
the new female firefly to replace the original female firefly.

IFACL is applied to UPMSP with sequence-dependent
setup times
Based on the literature [1], this work designs a two-stage
individual representation scheme to deal with this prob-
lem. This work applies the proposed IFACL algorithm to
solve the UPMSP with sequence-dependent setup times.
a)Machine assignment
The first stage is the machine assignment process. This

process describes the feasible solution of assigning N
tasks to M unrelated parallel machines so as to minimize
the maximum completion time (Cmax) of all machines,
which can be represented by an integer vector Seq1 whose
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Algorithm 1 Improved firefly algorithm with courtship
learning.
1: Randomly generate Np male fireflies as the initial

population {Xi|i = 1, 2, · · · ,Np};
2: Calculate the brightness value fb(.) of each male fire-

fly;
3: Initialize the external archive A = {Xi|i =

1, 2, · · · ,Np}, selection probability p, t=0;
4: while (t < tmax) do
5: for i = 1 : Np do
6: for j = 1 : Np do
7: if fb(Xj) < fb(Xi) then
8: Update the position of the male firefly

according to Eq. (3);
9: Update the optimal solution;

10: else
11: Calculate the selection probability using

Eq. (14);
12: Use the roulette strategy to calculate the

brightness of the selected female firefly Xk
in the external archive;

13: if fb(Xk) < fb(Xj) then
14: Move male firefly Xj towards female fire-

fly Xk according to Eq. (19);
15: Update the optimal solution;
16: end if
17: end if
18: end for
19: end for
20: Update the female archive A;
21: Update the female firefly selection probability p

according to Eq. (14);
22: t = t + 1;
23: end while

dimension is equal to the number of jobs. Taking the
assignment of 10 jobs and 3 parallel machines as an exam-
ple, if the vector Seq1 =[ 3, 1, 3, 2, 1, 2, 2, 3, 1, 1], it means
that the jobs {2, 5, 9, 10} will be performed on machine
1, the jobs {4, 6, 7} will be performed on machine 2, and
the jobs {1, 3, 8} will be performed on machine 3. This
requires the IFACL algorithm to adopt floor(.) in the itera-
tive optimization process, where floor(.) is a function used
to convert a real value to an integer value (i.e., floor(2.4) is
2). Hence, the position information of fireflies in FACL is
discretized by the floor(.) function.
b)Sequence scheduling
The second stage is to determine the sequence of jobs

on each machine. The sequence can be represented as a
matrix of the same length as the machine-assigned vec-
tor. Therefore, the job sequence represented by Seq2 can
be expressed as a M × N matrix, which illustrates the
sequence of operations on each machine. For the same

previous example, the following instance of Seq2 matrix,
where extending on the Seq1 vector, denotes that the
sequence of operations on machine 1 is: job 9, job 5, job
10 and job 2; the sequence of operations on machine 2 is:
job 4, job 7 and job 6; and the sequence of operations on
machine 3 is: job 3, job 1 and job 8. The zero after job 2 in
the first row denotes that job 2 is to be the last one to be
performed by machine 1. Using the same convention, jobs
6 and 8 are the last jobs performed by machines 2 and 3,
respectively.

Seq2 =
⎡

⎣

9 5 10 2 0 0 0 0 0 0
4 7 6 0 0 0 0 0 0 0
3 1 8 0 0 0 0 0 0 0

⎤

⎦. (20)

From the definition of Seq2 and xi,j,k , the value of xi,j,k
can be easily obtained. Then, we can calculate the com-
pletion time of the jobs at the machines Cj according to
formula (8). This is performed by using a large positive

number (V = ∞), where
M∑

k=1
xi,j,k = 1 when the jth job is

processed after the ith job, so V
(

M∑

k=1
xi,j,k − 1

)

= 0 and

Cj = Ci + Si,j,k + Pj,k .
In this work, for simplicity, the corrected processing

times APi,j,k is used to replace the times of the two
independent stages (machine processing times Pj,k and
sequence-dependent setup times Si,j,k) to determine the
maximum completion time. For the same example above,
in Tables 2, 3, 4, 5, the input parameters related to the
example are illustrated as an instance of the problem
under study.
APi,j,k can be expressed mathematically as follows:

∀ j = 1, 2, · · · ,N ,∀ k = 1, 2, · · · ,M : APi,j,k = Si,j,k + Pj,k ,

∀ i = 1, 2, · · · ,N .

(21)

Therefore, by introducing the concept of APi,j,k into
Eq. (4), the optimization objective function of UPMSP
with sequence-dependent setup times can be given by:

fb(.) = Cmax = max
1≤j≤N

{Cj} = max
k=1,··· ,M;
i=1,··· ,N

N
∑

j=1
APi,j,k . (22)

Table 2 Example of processing times for an instance of 10 jobs
and 3 machines

Pj,k job1 job2 job3 job4 job5 job6 job7 job8 job9 job10

Machine1 55 64 77 98 98 58 99 98 74 90

Machine2 57 71 96 90 98 83 52 92 97 84

Machine3 88 87 70 83 59 85 52 64 52 55
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Table 3 Example of sequence-dependent setup times on
machine 1

Si,j,1 job1 job2 job3 job4 job5 job6 job7 job8 job9 job10

job1 91 74 75 98 67 64 56 80 91 93

job2 85 72 98 77 60 88 78 63 77 54

job3 66 82 67 57 63 88 73 83 100 70

job4 98 85 79 57 81 69 51 84 54 63

job5 52 88 61 63 74 78 67 87 72 90

job6 72 64 88 92 68 54 58 73 55 72

job7 69 84 63 63 92 53 90 54 98 96

job8 88 83 75 91 79 77 66 61 50 59

job9 90 58 85 62 77 89 76 96 89 63

job10 59 56 95 96 96 97 58 58 91 57

Table 4 Example of sequence-dependent setup times on
machine 2

Si,j,2 job1 job2 job3 job4 job5 job6 job7 job8 job9 job10

job1 57 54 74 57 58 59 65 97 60 99

job2 93 62 67 97 82 68 75 94 61 72

job3 79 56 95 98 87 81 76 78 59 56

job4 77 59 68 79 82 89 91 81 61 63

job5 57 62 56 53 73 54 90 79 72 70

job6 93 71 89 62 77 96 82 60 66 80

job7 81 52 69 68 65 89 69 65 96 63

job8 68 95 62 91 87 74 91 74 72 80

job9 76 97 70 51 59 72 77 62 59 86

job10 70 75 55 52 84 72 68 92 95 61

Table 5 Example of sequence-dependent setup times on
machine 3

Si,j,3 job1 job2 job3 job4 job5 job6 job7 job8 job9 job10

job1 56 87 81 63 95 80 58 55 73 70

job2 65 74 84 67 95 81 99 91 72 76

job3 66 79 70 84 67 93 86 91 91 71

job4 71 62 68 57 85 90 75 86 54 83

job5 75 73 99 86 60 79 74 57 57 81

job6 54 98 52 55 52 59 53 83 59 65

job7 63 77 94 83 87 62 84 76 70 72

job8 90 76 96 75 75 94 52 99 92 51

job9 51 62 90 89 74 51 54 82 90 99

job10 96 74 55 86 95 74 76 90 53 58

The target for solving UPMSP with sequence-
dependent setup times problem is to minimize this
objective function fb(.).

The application of the algorithm
After the encoding process is completed, the UPMSP
with sequence-dependent setup times is solved through
the optimization steps of IFACL algorithm described

Algorithm 2 Psuedocode of the IFACL for UPMSP with
sequence-dependent setup times.
1: Set the number of jobsN and the number of machines

M based on the given problem.
2: Determine the number of male fireflies Np, the other

parameters for IFACL.
3: Specify the initial integer value for the initial popu-

lation of Np male fireflies X with dimension N. Each
dimension of every male firefly is uniformly generated
from [ 1,M] and then converted to integer value with
floor(.) function. Each male firefly denotes a possible
scheduling solution S for the current problem.

4: Calculate the fitness value fb(.) of each male firefly in
the initial population.

5: Set the external archive A = {Xi|i = 1, 2, · · · ,Np},
selection probability p, t=0;

6: while (t < tmax) do
7: for i = 1 : Np do
8: for j = 1 : Np do
9: if fb(Xj) < fb(Xi) then

10: Update the position of the male firefly
according to Eq. (3);

11: Update the optimal solution;
12: else
13: Calculate the selection probability using

Eq. (14);
14: Use the roulette strategy to calculate the

brightness of the selected female firefly Xk
in the external archive;

15: if fb(Xk) < fb(Xj) then
16: Move male firefly Xj towards female fire-

fly Xk according to Eq. (19);
17: Update the optimal solution;
18: end if
19: end if
20: end for
21: end for
22: Update the female archive A;
23: Update the female firefly selection probability p

according to Eq. (14);
24: t = t + 1;
25: end while
26: Output the approximate optimal scheduling solution.
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in “IFACL is applied to UPMSP with sequence-depen-
dent setup times” section. In the initial stage, the IFACL
algorithm first randomly assigned N planned jobs to M
available processing machines to generate an initial male
firefly population (represented by matrix X) consisting of
Np male firefly individuals. Each male firefly individual
corresponds to a job sequence on a particular machine
selected after encoding in the M × N matrix described
in “IFACL is applied to UPMSP with sequence-dependent
setup times” section. Female firefly populations in exter-
nal archiveA can be initialized bymale firefly populations.
The specific steps of IFACL for the UPMSP with

sequence dependent setup times are as follows:
Step 1: Initialization. According to the mathematical

model of UPMSP and the given range of machine pro-
cessing times and sequence-dependent setup times, the
parameters of IFACL are initialized.
Step 2: Population evolution. The population evolu-

tion process of IFACL is described in “Improved firefly
algorithm with courtship learning” section.
Step 3: When the evolution meets the stop condition,

the relevant information of the optimal female firefly is
output as the approximate optimal scheduling scheme.
The psuedocode of the IFACL for UPMSP with

sequence-dependent setup times is illustrated in Algo-
rithm 2. Figure 2a and 2b are respectively the scheduling
scheme result diagram and corresponding objective func-
tion variation curve obtained by IFACL after 50 iterations
when processing 10 planned jobs and assigning them to
3 available processing machines according to the above
steps. As can be seen from Fig. 2b, IFACL has a high
convergence rate in the case of small scale.

Computational complexity
Literature [11] has demonstrated that the CL framework
of FACL does not increase the method’s computational
complexity significantly. The IFACL algorithm is directly

derived from the FACL algorithm, but the attraction fac-
tor is different, so its complexity is similar to that of FACL.
Here, we analyze the time complexity of IFACL accord-
ing to Algorithm 2. The related symbols are defined as
follows: the population size, the number of jobs (prob-
lem dimension) and the total number of iterations are
denoted as Np, N and tmax, respectively. First, in the ini-
tialization stage, the main computation cost of IFACL is
O(Np×N) +O(Np), which is obtained by step 1-4. Then,
during the optimization process in IFACL, since the aver-
age number of attractions for each firefly is (Np − 1)/2
[27], the computation cost of the while loop in IFACL is
O(tmax×Np×Np×N). Therefore, the overall computation
cost of IFACL is given as follow.

O(IFACL) = O(Np×N)+O(Np)+O(tmax×Np ×Np×N)

≈ O(tmax ×Np ×Np × N) (23)

Compared with other heuristic algorithms, such as PSO,
whose computational complexity is O(tmax × Np × N),
the IFACL and FA variants have higher computational
complexity.

Simulation experiment
In order to verify the effectiveness of the IFACL algo-
rithm in solving the UPMSP with sequence-dependent
setup times, two benchmark test datasets were used to
verify the results. The first benchmark test dataset (named
Dataset1) is generated by ourselves based on the relevant
literature [28], which has been applied in many related
studies [3, 21, 24, 25, 28, 29]. On this dataset, the per-
formance of the IFACL algorithm in the (Pj,k|Si,j,k|Cmax)
problem is compared with some existing meta-heuristics
algorithms in the literature, including GA [21], SA [28],
basic FA and FACL algorithms. In order to avoid the ran-
domness of the test results, each algorithm was repeated

Fig. 2 IFACL solves the UPMSP problem through 50 iterations
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Table 6 Comparison between IFACL algorithm and four comparison algorithms in P, SBalanced instances on Dataset1

M N GA SA FA FACL IFACL (Ours)

Mean SD Mean SD Mean SD Mean SD Mean SD

20 1206.00 10.97 1203.07 5.31 1208.47 10.42 1205.53 11.65 1213.80 10.48

40 2482.13 24.27 2534.93 10.47 2492.87 24.85 2496.07 23.82 2485.67 11.34

2 60 3697.73 35.04 3856.13 15.05 3702.93 16.24 3703.47 23.06 3692.67 22.53

80 4993.20 36.92 5243.60 24.00 4966.93 25.66 4976.80 25.34 4951.53 24.43

100 6142.40 32.25 6522.00 25.45 6128.27 28.55 6108.20 42.68 6105.67 25.06

120 7479.33 34.91 7959.93 23.85 7399.93 20.78 7420.47 22.38 7382.20 32.67

20 566.20 7.71 569.47 4.05 564.73 9.41 570.87 11.86 565.60 6.68

40 1187.73 18.93 1232.47 7.45 1177.60 18.31 1185.27 25.84 1167.53 17.74

4 60 1816.73 20.95 1918.93 13.26 1790.47 21.69 1801.27 26.83 1776.67 22.85

80 2411.73 32.17 2600.53 14.82 2376.00 18.81 2371.33 27.99 2389.20 30.86

100 3071.13 55.10 3308.47 13.89 3009.13 20.76 3019.20 30.79 2982.73 24.60

120 3706.87 38.60 4007.67 15.61 3645.13 29.08 3646.27 33.95 3614.60 30.84

20 393.73 6.98 390.27 4.99 395.33 8.29 396.33 10.57 395.67 10.10

40 805.67 16.38 834.33 8.21 788.47 12.98 790.27 22.43 780.27 14.25

6 60 1221.07 20.23 1293.73 9.56 1185.20 22.47 1198.00 23.17 1186.80 35.76

80 1620.40 19.85 1742.07 9.99 1594.20 45.89 1588.20 22.43 1565.53 25.70

100 2054.27 26.61 2231.00 10.62 2016.93 23.28 2023.87 31.50 2008.60 28.79

120 1891.73 28.02 2042.67 10.15 1827.07 18.97 1831.33 21.93 1798.33 14.08

20 295.47 9.68 294.80 5.27 295.40 8.51 295.27 8.44 293.67 8.38

40 580.53 15.19 613.93 6.43 585.00 30.42 571.93 21.54 564.00 15.19

8 60 922.00 32.08 984.60 5.78 910.60 34.17 902.53 21.30 892.60 22.84

80 1246.73 22.19 1331.87 11.88 1219.27 23.99 1220.80 34.32 1194.13 28.99

100 1568.53 33.18 1693.20 12.07 1514.07 21.85 1519.27 23.55 1487.13 25.61

120 1530.33 25.79 1665.73 9.96 1474.47 18.01 1480.33 24.33 1458.27 22.29

20 196.40 7.84 203.27 3.13 209.53 36.25 199.93 31.90 212.33 35.56

40 456.20 18.67 484.33 7.98 459.47 25.44 448.00 24.51 460.13 34.32

10 60 727.87 23.65 776.07 7.27 711.33 22.65 719.73 38.29 705.00 22.87

80 994.93 19.96 1072.53 7.60 960.47 20.76 976.53 28.52 962.33 20.96

100 1246.27 28.77 1363.60 12.27 1205.93 14.02 1222.07 21.59 1214.80 43.84

120 2488.40 29.09 2701.00 15.72 2459.00 46.26 2433.00 33.81 2403.93 24.12

20 186.07 7.10 191.40 4.31 188.13 9.32 182.40 4.93 188.20 7.73

40 418.87 13.43 441.53 4.73 418.20 15.38 418.00 19.51 412.53 12.57

12 60 604.67 26.58 658.60 8.24 606.40 18.28 602.00 24.15 602.40 20.42

80 831.27 15.12 907.67 8.76 807.40 27.49 806.87 20.68 806.20 20.68

100 1073.53 39.00 1157.67 9.69 1040.53 49.34 1028.40 27.93 1009.93 27.42

120 1294.27 43.56 1409.60 13.28 1241.00 24.51 1264.40 25.70 1236.07 42.92

for 15 times. In consideration of the need to obtain a fea-
sible solution within an acceptable time range, the maxi-
mum number of iterations was selected asMaxIt = 1000,
Np = 50, and all other parameters were directly derived
from literature [24]. The second benchmark test dataset

(named Dataset2) is provided by Rabadi [23], which
also has been applied in many existed studies [30–33].
Dataset2 is also available via the scheduling research web-
site (http://schedulingresearch.com/). The performance
of the proposed algorithm is further verified by running

http://schedulingresearch.com/
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Table 7 Comparison between IFACL algorithm and four comparison algorithms in PDominant instances on Dataset1

M N GA SA FA FACL IFACL (Ours)

Mean SD Mean SD Mean SD Mean SD Mean SD

20 1964.47 14.24 1959.67 4.95 1963.40 9.19 1971.80 14.37 1971.67 11.01

40 3938.33 14.92 4001.67 12.45 3952.80 26.55 3953.20 19.67 3943.07 21.14

2 60 5906.93 28.28 6078.60 17.44 5931.67 13.65 5923.20 32.20 5913.40 22.25

80 7861.00 43.22 8143.07 17.55 7856.13 38.36 7867.47 31.88 7847.27 26.90

100 10019.87 32.39 10393.20 18.12 9991.80 32.24 9961.67 33.50 9964.20 37.65

120 11974.60 40.25 12477.33 13.30 11932.27 31.87 11939.47 25.83 11929.20 51.46

20 955.93 7.01 953.20 5.72 957.60 9.74 949.00 11.75 948.73 12.40

40 1920.80 15.67 1969.07 10.55 1915.53 12.28 1917.93 22.07 1909.80 14.66

4 60 2910.33 25.65 3032.53 11.80 2888.67 16.99 2902.40 31.18 2894.60 16.94

80 3938.73 50.29 4101.80 16.37 3891.27 31.93 3901.60 37.11 3880.40 27.47

100 4985.07 37.69 5198.87 14.47 4919.80 48.31 4887.13 25.86 4890.67 46.34

120 5981.47 38.06 6302.67 20.49 5921.73 30.74 5906.60 35.25 5879.87 27.63

20 705.73 13.25 694.93 5.11 707.60 10.48 709.53 14.56 703.53 11.53

40 1303.20 12.55 1345.60 6.09 1305.27 17.60 1300.53 13.55 1299.87 18.62

6 60 1953.93 26.84 2036.00 8.03 1920.87 17.49 1929.53 23.60 1921.47 34.63

80 2654.67 23.72 2773.00 19.87 2607.67 13.52 2623.20 29.42 2615.73 22.12

100 3310.93 30.53 3479.80 13.71 3264.27 31.89 3255.60 26.83 3248.93 25.90

120 4019.80 35.86 4210.60 11.54 3935.53 21.64 3938.47 34.38 3903.67 45.05

20 525.00 10.09 522.60 4.73 516.47 5.18 526.67 9.80 523.33 8.07

40 955.67 9.46 990.13 4.96 937.87 7.79 945.20 9.68 942.27 11.28

8 60 1500.80 17.82 1581.20 8.08 1497.67 24.37 1493.33 22.64 1474.20 14.91

80 1974.27 25.86 2081.00 10.54 1951.67 38.40 1939.40 35.13 1924.80 32.64

100 2508.87 25.33 2656.60 11.87 2476.07 13.59 2480.20 40.11 2446.20 23.06

120 3007.47 28.56 3188.20 18.39 2960.93 24.16 2960.20 25.70 2932.67 26.43

20 350.67 7.58 354.73 2.91 369.53 57.68 346.60 3.44 363.13 54.71

40 746.60 10.55 786.67 5.14 730.93 11.44 772.13 58.61 753.47 46.30

10 60 1169.93 16.86 1234.40 8.09 1147.93 30.79 1155.47 27.06 1197.13 54.17

80 1591.87 28.69 1686.00 10.74 1576.47 39.79 1570.80 33.85 1562.53 47.60

100 2009.67 33.06 2131.67 9.54 1977.27 28.36 1986.00 37.41 1976.73 18.05

120 2444.67 21.62 2582.20 17.06 2402.13 32.24 2394.93 28.54 2369.27 30.18

20 337.33 9.00 342.20 3.17 335.13 5.99 337.00 5.54 337.27 6.81

40 711.13 7.87 739.40 4.76 702.33 10.12 707.73 20.02 703.00 9.42

12 60 968.73 17.40 1034.00 8.67 988.53 58.71 993.27 62.44 993.60 62.19

80 1366.20 26.09 1440.60 6.39 1347.67 49.73 1342.60 41.07 1310.80 20.34

100 1738.47 25.03 1827.27 9.95 1694.00 39.96 1695.20 23.30 1669.33 18.41

120 2043.00 29.06 2179.40 24.78 2011.27 51.51 2025.67 29.95 1996.93 36.05

it on Dataset2 and comparing it with the state-of-the-art
work. All experiments were implemented by MATLAB
2020a programming and run in Windows environment
with 8.0G RAM and 3.6GHz CPU.

Experimental results and performance comparison on
dataset1
Dataset1 contains two categories, namely processing
times and setup times, and its data are randomly gen-



Huang et al. Journal of Cloud Computing            (2022) 11:9 Page 11 of 17

Table 8 Comparison between IFACL algorithm and four comparison algorithms in SDominant instances on Dataset1

M N GA SA FA FACL IFACL (Ours)

Mean SD Mean SD Mean SD Mean SD Mean SD

20 1892.47 13.76 1883.13 5.90 1893.73 12.16 1886.80 12.90 1891.00 15.84

40 3922.13 17.39 3985.33 9.30 3932.53 17.19 3936.60 24.05 3936.33 20.06

2 60 5876.07 33.47 6020.40 16.06 5866.93 26.32 5859.27 31.52 5869.80 28.91

80 7974.93 41.16 8230.27 22.73 7961.53 33.63 7951.67 18.65 7941.87 31.74

100 9915.27 23.09 10275.73 24.59 9875.67 22.67 9854.73 43.85 9848.73 31.46

120 12026.87 37.70 12528.33 23.76 11982.53 31.11 11969.13 35.27 11950.80 24.97

20 879.33 11.60 878.67 3.96 876.27 7.15 875.20 12.74 873.67 12.27

40 1870.53 17.89 1921.93 9.56 1868.53 16.52 1862.27 22.58 1852.13 11.84

4 60 2887.60 22.82 2984.87 13.43 2872.60 20.21 2867.33 27.27 2849.47 16.52

80 3871.73 29.04 4048.07 16.39 3843.67 29.12 3837.93 40.35 3836.00 45.45

100 4879.60 36.38 5125.73 19.30 4812.07 22.24 4812.87 36.79 4795.40 37.98

120 5880.93 37.62 6185.80 16.32 5817.47 20.91 5824.87 38.84 5783.47 23.91

20 627.67 10.65 618.73 3.83 631.73 7.51 633.13 6.50 630.73 10.32

40 1241.40 20.03 1272.60 8.44 1221.07 14.05 1216.93 16.36 1222.20 19.27

6 60 1867.47 26.16 1959.80 10.30 1851.33 29.41 1856.60 27.18 1840.53 21.91

80 2593.80 22.92 2715.73 16.56 2558.33 29.94 2564.67 36.06 2554.13 28.27

100 3247.13 44.29 3419.07 16.07 3184.67 37.71 3213.60 44.36 3160.27 29.00

120 3893.80 20.51 4122.40 15.01 3858.07 49.06 3852.07 30.08 3831.47 54.53

20 445.40 8.10 447.60 4.45 444.07 11.34 443.13 7.61 444.80 7.18

40 881.73 20.22 914.07 7.80 866.67 16.22 876.00 24.57 861.33 17.19

8 60 1447.33 19.10 1498.00 11.61 1402.40 9.52 1413.40 21.89 1410.93 23.87

80 1927.40 29.91 2009.33 11.54 1888.40 33.21 1871.80 25.32 1880.73 35.63

100 2434.40 26.49 2575.00 10.80 2395.20 32.28 2396.87 35.87 2375.07 36.58

120 2958.07 40.38 3119.80 12.37 2880.00 30.80 2891.27 30.64 2862.60 38.16

20 285.40 48.23 278.27 2.40 290.47 55.17 323.87 78.35 279.87 40.64

40 680.87 11.84 715.53 6.37 695.20 52.80 683.67 38.23 673.53 32.86

10 60 1108.13 26.79 1164.20 5.57 1102.27 43.02 1085.87 38.78 1091.60 40.61

80 1514.67 36.83 1598.00 13.08 1473.93 33.18 1480.33 37.20 1471.73 56.10

100 1931.60 31.36 2047.67 11.09 1893.67 34.14 1906.60 28.19 1905.00 26.88

120 2350.53 28.88 2505.93 16.58 2312.53 28.44 2323.40 48.20 2296.53 35.60

20 260.93 6.88 265.27 3.13 262.13 7.34 263.33 8.35 258.87 6.40

40 638.13 15.89 664.53 7.09 638.60 18.17 639.93 22.61 632.60 11.44

12 60 899.93 13.74 964.87 8.73 922.00 58.55 919.40 54.25 924.87 61.65

80 1291.40 28.17 1358.87 10.98 1244.13 13.02 1263.13 34.10 1241.20 16.61

100 1640.20 13.67 1751.40 9.46 1616.20 45.79 1625.80 54.65 1597.07 26.21

120 1954.40 31.51 2104.80 22.65 1963.73 62.48 1934.07 39.02 1938.13 28.46

erated by two discrete uniform distribution: U[50, 100]
and U[125, 175]. The choice of the uniform distribution
boundaries for processing times and setup times deter-
mines the level of dominance [28]. In other words, when

the processing times and setup times are balanced (indi-
cated by P, S Balanced), they are both generated by U[50,
100]. When the processing times dominate (indicated by
P Dominant), the processing times and the setup times
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Fig. 3 Rank comparison of the five algorithms forMean values over different categories on Dataset1

Fig. 4 Average convergence curve for each algorithm on P, SBalanced instances of Dataset1 when the number of machinesM=2

Fig. 5 Average convergence curve for each algorithm on P, SBalanced instances of Dataset1 when the number of machinesM=10



Huang et al. Journal of Cloud Computing            (2022) 11:9 Page 13 of 17

Fig. 6 Average convergence curve for each algorithm on PDominant instances of Dataset1 when the number of machinesM=2

are generated by U[125, 175] and U[50, 100], respec-
tively. When the setup times are dominate (indicated as S
Dominant), the processing times and the setup times are
extracted from [50, 100] and [125, 175], respectively.
The dataset generated from the above distribution con-

sists of N jobs andMmachines, covering 6 scenarios. The
number of machines in each case is 2, 4, 6, 8, 10, and 12,
and the number of jobs ranges from 20, 40, 60, 80, 100, and
120, respectively. Therefore, a total of 36 sets of calcula-
tion examples are constructed, and each set of calculation
examples is run in each algorithm. Considering that the
ratio of the computational time of algorithms to the execu-
tion time of the tasks is small, this work mainly evaluates

the solving accuracy of the algorithms, which is measured
by theMean and variance SD.
Tables 6, 7, 8 illustrate the results on Dataset1 when the

processing and setup times are balanced, when the pro-
cessing times are dominant, and when the setup times are
dominant, respectively. Among them, the optimal value
of each case is marked in black and bold, and the result
retains 2 decimal places.
When the processing times and setup times are bal-

anced, according to Table 6, the results obtained by the
IFACL algorithm onDataset1 can obtain 24 optimalMean
values out of the 36 test cases in terms of accuracy. There-
fore, in terms of accuracy, it is obvious that the IFACL is

Fig. 7 Average convergence curve for each algorithm on PDominant instances of Dataset1 when the number of machinesM=10
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Fig. 8 Average convergence curve for each algorithm on SDominant instances of Dataset1 when the number of machinesM=2

superior to the other four compared algorithms in terms
of accuracy, followed by the other two FA variants (FA and
FACL). In terms of stability, SA obtains 34 best SD values
in the 36 cases, indicating that SA is of the highest stabil-
ity. Besides that, IFACL also performs pretty good stability
on Dataset1.
When the processing times dominate, as can be seen

from Table 7, IFACL also shows the best performance in
terms of accuracy as it achieves 19 optimal results out of
the 36 test cases on Dataset1, followed by FA and FACL.
Since the SA obtains 33 best SD values out of the 36 test
cases, the SA still shows the best stability.

When the setup times dominate, according to Table 8,
the IFACL achieves 23 bestMean values out of the 36 test
cases on Dataset1, which shows that IFACL still performs
best in terms of accuracy. Obviously, SA is the most stable,
too.
To make the comparison of the five algorithms in terms

of accuracy more intuitively and precisely, on the basis of
Tables 6, 7, 8, this work also compares the rank of Mean
values obtained by each comparison method in each of
the 36 cases on three different categories of Dataset1, as
is shown in Fig. 3. For each cases on different categories,
the top-ranked approach will add 1 on the correspond-

Fig. 9 Average convergence curve for each algorithm on SDominant instances of Dataset1 when the number of machinesM=10
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ing bar and the last-ranked approach will add 5, which
denotes that the best method would correspond to the
lowest bar. As can be seen from the Fig. 3, IFACL ranks
first in three different categories, while SA ranks last.
The result illustrates that when solving the UPMSP with
sequence-dependent setup times on Dataset1, our pro-
posed IFACL-based scheduling approach has best accu-
racy in all compared algorithms.
Figures 4, 5, 6, 7, 8 and 9 show the average convergence

curves of these five algorithms on Dataset1 with differ-
ent job numbers when the number of machines is 2 and
10, respectively, including the P, S,Balanced instances,
PDominant instances and SDominant instances. These
figures show that the convergence rate of IFACL is sim-
ilar to that of FA and FACL, but better than that of GA
and SA. In addition, these figures further demonstrate the
high performance of IFACL in terms of accuracy.

Experimental results and performance comparison on
dataset2
In this subsection, another UPMSP benchmark dataset
named Dataset2 is used to evaluate the proposed algo-
rithm. Dataset2 also contains the two categories, includ-
ing the processing times and the setup times. In this
section, the IFACL is compared with the state-of-the-art
from the literature such as FSS [30], WO [31], GADP2
[32], SADP [32], IFA [33]. These approaches are chosen
since they established their quality to address the UPSMP
with sequence-dependent setup times and all of them
adopt the same benchmark instances (that is, Dataset2) to
solve UPMSPs in previous studies.
Similar to the comparison approaches, such as IFA,

only show results of P, SBalanced instances on Dataset2,
we also conduct experiments in P, SBalanced cases here.
According to literature [30], themaximum number of iter-

ations is set to 10000 and the size of population is set to
100. Note that the results of the comparison algorithms
are derived directly from the corresponding papers.
Table 9 presents the results of the methods on Dataset2

when the processing and setup times are balanced. Since
the FSS only present theMean results, we also just present
the Mean results in Table 9. Furthermore, WO, GADP2
and SADP only present the results for problem instances
with 2, 6 and 12 machines and 20, 40, 60, and 80 jobs,
therefore, Table 9 also provides the corresponding results
for the same problem instances. Among them, the optimal
value of each case is marked in black and bold.
As can be seen from Table 9, both the IFACL and the

FSS obtain the 5 bestMean values out of 12 instances, fol-
lowed by the WO and the IFA. It can also be observed
that when the number of jobs is 20, IFACL manages to
outperform the other approaches. When the number of
jobs is 40, IFACL also performs the best or second best.
This demonstrates that IFACL is suitable for process-
ing problem instances with a relatively small number of
jobs. Besides, comparing with IFA, IFACL obtains 9 bet-
ter results in 12 problem instances, which also verifies the
effectiveness of the introduction of Cauchy distribution as
a factor of female and male attraction on the basis of the
FACL framework aforementioned in this work in improv-
ing FA performance to a certain extent. Although IFACL
does not perform optimally when the number of jobs is 60
or 80, it is still a valid candidate algorithm overall.
In summary, the IFACL has great potential to achieve

high-quality solutions over the Dataset1 and Dataset2 of
the UPMSP problems. It outperforms the FA, FACL, GA
and SA in most problem instances on Dataset1, and it
performs quite well on Dataset2 compared to the state-
of-the-art work, especially for the problem instances with
a relatively small number of jobs. Whereas, the proposed

Table 9 Comparison between IFACL and the state-of-the-art in P, SBalanced instances on Dataset2

M N Mean

FSS [30] WO [31] GADP2 [24] SADP [24] IFA [33] IFACL (Ours)

20 1234.87 1235 1254 1255 1201 1187.40

40 2391.20 2397 2459 2462 2396 2392.60

2 60 3563.40 3574 3675 3764 3612 3686.40

80 4723.60 4730 4872 4879 4813 4904.33

20 445.87 446 454 455 407 378.47

40 777.53 778 831 841 767 758.67

6 60 1128.73 1133 1246 1259 1125 1171.67

80 1501.33 1513 1648 1662 2346 1562.33

20 231.00 231 239 241 188 181.67

40 430.93 431 455 447 493 404.73

12 60 562.27 562 649 669 715 605.93

80 755.40 762 849 891 959 801.93
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IFACL benefits from the advantages of both the FACL
framework and the new female and male attractiveness
factor, thereby improving its search performance and rais-
ing its ability to avoid getting stuck in local optima. Fur-
thermore, compared with the FA, FACL, GA and SA, the
IFACL is also the fastest algorithm to reach the mini-
mummakespan, as shown in the convergence curves. The
comparison with the state-of-the-art work demonstrates
the effectiveness of the IFACL in some of the problem
instances on Dataset2, and the IFACL is competitive with
other algorithms. However, the proposed approach has
some limitations, such as performance degradation when
the number of jobs is large, as shown in the Table 9. It
stands for the reason that the new attractiveness factor in
IFACL is also close to 0 at the later stage of the search,
so the ability of IFACL to jump out of the local optimum
in high dimensions is weaker than that of some state-of-
the-art works. In addition, the processing times, the initial
job sequences and the sequence-dependent setup times
should be generated before starting the search process.

Conclusion
Aiming at the UPMSP with sequence-dependent setup
times, this work proposes the IFACL algorithm, which
takes minimizing the maximum completion time as the
scheduling optimization goal to solve the UPMSP with
sequence dependent setup times. For the IFACL algo-
rithm, the Cauchy distribution function with wide distri-
bution and gentle decline is introduced as a new attrac-
tion factor of male and female. This design can enhance
the social information exchange between fireflies and
enhance the ability of the algorithm to jump out of the
local optimum in high-dimensional situations. The test
results of two benchmark test datasets show that the
scheduling algorithm proposed in this work is effective
in dealing with sequence-dependent setup times UPMSP.
Compared with GA and SA in terms of accuracy on
Dataset1, the IFACL has obvious advantages, and it is
also greatly improved compared with FA and FACL. Fur-
thermore, based on the empirical results on Dataset2, the
IFACL is shown to be competitive with other state-of-the-
art algorithms.
The scheduling problem of application scenarios such

as edge computing is a hot topic of scheduling research.
However, there is no unified model standard yet. In the
future, we will continue to use the UPMSPmodel for refer-
ence and study under the conditions of considering more
constraints such as bandwidth and different network ser-
vice providers’ charges, and propose efficient algorithm to
solve the problem.
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