From: Fast methods for designing circulant network topology with high connectivity and survivability
Step 1: Calculate the set of jump sequence points surrounding W, which can be denoted by W’ = {w
_{1}', w
_{2}', …,w
_{
j
}'}, with w
_{
i
} ' ∈ (w
_{
i
} − α, w
_{
i
} + α). Calculate \( {\overline{D}}_{center}=f\left(m,W\right) \)
Step 2: Calculate all \( {\overline{D}}_{neigh}=f\left(m,W\hbox{'}\;\right) \), and determine the W’ _{ neigh_min } that corresponds to the minimum \( {\overline{D}}_{neigh} \) within the neighborhood. The minimum \( {\overline{D}}_{neigh} \) is denoted by \( {\overline{D}}_{neigh\_ \min } \). Step 3: If \( {\overline{D}}_{neigh\_ \min }<{\overline{D}}_{center} \), set W = W’ _{ neigh_min }, \( {\overline{D}}_{center}={\overline{D}}_{neigh\_ \min } \), and goto Step 1. Otherwise, output W’ _{ neigh_min }. |