“Global social media statistics research summary 2022.” https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/. Accessed 20 Sept 2022
“Ground radar precipitation estimation with deep learning approaches in meteorological private,” doi: https://doi.org/10.1186/s13677-020-00167-w.
Kabakus AT, Erdogmus P (2022) An experimental comparison of the widely used pre-trained deep neural networks for image classification tasks towards revealing the promise of transfer-learning. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.7216
Article
Google Scholar
A. Sevik, P. Erdogmus, and E. Yalein, “Font and Turkish Letter Recognition in Images with Deep Learning,” in 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), 2018, pp. 61–64, doi: https://doi.org/10.1109/IBIGDELFT.2018.8625333.
Alhudhaif A, Polat K, Karaman O (2021) Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images. Expert Syst Appl 180:115141. https://doi.org/10.1016/j.eswa.2021.115141
Article
Google Scholar
N. Calik and B. U. Toreyin, “Image Analysis,” 2022, pp. 201–238.
B. Pang and L. Lee, “A sentimental education,” in Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL ’04, 2004, pp. 271-es, doi: https://doi.org/10.3115/1218955.1218990.
Y. Zhang et al., “BigSSL: Exploring the Frontier of Large-Scale Semi-Supervised Learning for Automatic Speech Recognition,” IEEE J. Sel. Top. Signal Process., pp. 1–14, 2022, doi: https://doi.org/10.1109/JSTSP.2022.3182537.
Mridha MF, Ohi AQ, Hamid MA, Monowar MM (2022) A study on the challenges and opportunities of speech recognition for Bengali language. Artif Intell Rev 55(4):3431–3455. https://doi.org/10.1007/s10462-021-10083-3
Article
Google Scholar
S. Meera and S. Geerthik, “Natural Language Processing,” in Artificial Intelligent Techniques for Wireless Communication and Networking, Wiley, 2022, pp. 139–153.
K. R. Chowdhary, “Natural Language Processing,” in Fundamentals of Artificial Intelligence, New Delhi: Springer India, 2020, pp. 603–649.
S. Zhang, X. Liu, and J. Xiao, “On Geometric Features for Skeleton-Based Action Recognition Using Multilayer LSTM Networks,” in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Mar. 2017, pp. 148–157, doi: https://doi.org/10.1109/WACV.2017.24.
Mahjoub S, Chrifi-Alaoui L, Marhic B, Delahoche L (2022) Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks. Sensors 22(11):4062. https://doi.org/10.3390/s22114062
Article
Google Scholar
Dai Y, Rong H, Wu Y, Yang C, Xu Y (2022) Stall flutter prediction based on multi-layer GRU neural network. Chinese J Aeronaut. https://doi.org/10.1016/j.cja.2022.07.011
Article
Google Scholar
V. Gaur and R. Kumar, “DDoSLSTM: Detection of Distributed Denial of Service Attacks on IoT Devices using LSTM Model,” in 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), Mar. 2022, pp. 01–07, doi: https://doi.org/10.1109/IC3IOT53935.2022.9767889.
S. Malik, P. Bansal, P. Sharma, R. Jain, and A. Vashisht, “Image Retrieval Using Multilayer Bi-LSTM,” 2022, pp. 745–755.
Chi D (2022) Research on electricity consumption forecasting model based on wavelet transform and multi-layer LSTM model. Energy Rep 8:220–228. https://doi.org/10.1016/j.egyr.2022.01.169
Article
Google Scholar
Rana TA, Cheah YN (2016) Aspect extraction in sentiment analysis: comparative analysis and survey. Artif Intell Rev 46:459–483. https://doi.org/10.1007/s10462-016-9472-z]
Article
Google Scholar
D’Aniello G, Gaeta M, La Rocca I (2022) KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. Artif Intell Rev 55:5543–5574. https://doi.org/10.1007/s10462-021-10134-9
Article
Google Scholar
Hemmatian F, Sohrabi MK (2019) A survey on classification techniques for opinion mining and sentiment analysis. Artif Intell Rev 52(3):1495–1545. https://doi.org/10.1007/s10462-017-9599-6
Article
Google Scholar
S. Rosenthal, N. Farra, P. Nakov, “SemEval-2017 task 4: Sentiment analysis in Twitter. In: Proceedings of the 11th international workshop on semantic evaluation,” Association for Computational Linguistics, Vancouver, Canada, 2017, pp 502–518. https://doi.org/10.18653/v1/S17-2088
S. Behdenna, F. Barigou, G. Belalem, “Document level sentiment analysis: a survey,” EAI Endorsed Trans Context Aware Syst Appl. https://doi.org/10.4108/eai.14-3-2018, 154339
E. Cambria, D. Das, S. Bandyopadhyay, A. Feraco, A. “Affective Computing and Sentiment Analysis”, In: Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A. (eds) A Practical Guide to Sentiment Analysis. Socio-Affective Computing,2016 vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-55394-8_1
S. Poria, A. Cambria, and A. Gelbukh, A. “Aspect extraction for opinion mining with a deep convolutional neural network,”. Knowledge-Based Systems, 2017, 108, 42–49.
B. Liang, H. Su, ., Gui, E. Cambria, and R. Xu, “Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks,” Knowledge-Based Systems, 2022, 235, 107643.
Birjali M, Kasri M, M., & Beni-Hssane, A. (2021) A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowl-Based Syst 226:107134
Article
Google Scholar
Li W, Guo K, Shi Y, Zhu L, Zheng Y (2018) DWWP: Domainspecific new words detection and word propagation system for sentiment analysis in the tourism domain. Knowl-Based Syst 146:203–214
Article
Google Scholar
Ye Q, Zhang Z, Law R (2009) Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst Appl 36(3):6527–6535
Article
Google Scholar
D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning sentiment-specific word embedding for twitter sentiment classification,” in Proceedings of Annual Meeting of the Association for Computational Linguistics, 2014, pp. 1555–1565.
Jain VK, Kumar S, Fernandes SL (2017) Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. Journal of computational science 21:316–326
Article
Google Scholar
Liu Q, Lu J, Zhang G, Shen T, Zhang Z, Huang H (2021) Domain-specific meta-embedding with latent semantic structures. Inf Sci 555:410–423
Article
MathSciNet
Google Scholar
Q. Liu, H.-Y. Huang, Y. Gao, X. Wei, Y. Tian, and L. Liu, “Taskoriented word embedding for text classification,” in Proceedings of the 27th international conference on computational linguistics, 2018, pp. 2023–2032.
W. Li, W. Shao, S. Ji, and E. Cambria, “BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis,”Neurocomputing, vol. 467, pp. 73–82, 2022.]
Li, C., Gao, F., Bu, J., Xu, L., Chen, X., Gu, Y., ... & Yu, Z. (2021). Sentiprompt: Sentiment knowledge enhanced prompt-tuning for aspect-based sentiment analysis. arXiv preprint arXiv:2109.08306, Dang,
E., Hu, Z., & Li, T. (2022). Enhancing Collaborative Filtering Recommender with Prompt-Based Sentiment Analysis. arXiv preprint arXiv:2207.12883.,
Mao, R., Liu, Q., He, K., Li, W., & Cambria, E. (2022). The biases of pre-trained language models: An empirical study on prompt-based sentiment analysis and emotion detection. IEEE Transactions on Affective Computing
Sonawane, S. S., & Kulkarni, P. A. (2014). Graph based representation and analysis of text document: A survey of techniques. International Journal of Computer Applications, 96(19).]
Yu, B., & Zhang, S. (2022). A novel weight-oriented graph convolutional network for aspect-based sentiment analysis. The Journal of Supercomputing, 1–26.
P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” 2021, arXiv preprint arXiv:2107.13586.
E. Cambria, “Affective Computing and Sentiment Analysis,” in IEEE Intelligent Systems, vol. 31, pp. 102–107, Mar.-Apr. 2016, doi: https://doi.org/10.1109/MIS.2016.31.
M. Gaur, K. Gunaratna, S. Bhatt and A. Sheth, "Knowledge-Infused Learning: A Sweet Spot in Neuro-Symbolic AI," in IEEE Internet Computing, vol. 26, no. 4, pp. 5–11, 1 July-Aug. 2022, doi: https://doi.org/10.1109/MIC.2022.3179759.
Cambria, E., Liu, Q., Decherchi, S., Xing, F., & Kwok, K. (2022). SenticNet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis. Proceedings of LREC 2022.
A. Pimpalkar and J. R. Raj R, “MBiLSTMGloVe: Embedding GloVe knowledge into the corpus using multi-layer BiLSTM deep learning model for social media sentiment analysis,” Expert Syst. Appl., vol. 203, p. 117581, Oct. 2022, doi: https://doi.org/10.1016/j.eswa.2022.117581.
N. D. Derra and D. Baier, “Working in Detail: How LSTM Hyperparameter Selection Influences Sentiment Analysis Results,” Arch. Data Sci. Ser. A, 6(1), 10., vol. 6, no. 1, pp. 1–22, 2020, doi: https://doi.org/10.5445/KSP/1000098011/10.
Islam MS, Ghani NA (2022) A Novel BiGRUBiLSTM Model for Multilevel Sentiment Analysis Using Deep Neural Network with BiGRU-BiLSTM. Lect Notes Electr Eng 730(July):403–414. https://doi.org/10.1007/978-981-33-4597-3_37
Article
Google Scholar
S. Sabba, N. Chekired, H. Katab, N. Chekkai, and M. Chalbi, “Sentiment Analysis for IMDb Reviews Using Deep Learning Classifier,” in 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), 2022, pp. 1–6, doi: https://doi.org/10.1109/ISPA54004.2022.9786284.
A. Yenter and A. Verma, “Deep CNN-LSTM with combined kernels from multiple branches for IMDb review sentiment analysis,” in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), Oct. 2017, pp. 540–546, doi: https://doi.org/10.1109/UEMCON.2017.8249013.
Ghorbani M, Bahaghighat M, Xin Q, Özen F (2020) ConvLSTMConv network: a deep learning approach for sentiment analysis in cloud computing. J Cloud Comput 9(1):16. https://doi.org/10.1186/s13677-020-00162-1
Article
Google Scholar
K. Amulya, S. B. Swathi, P. Kamakshi, and Y. Bhavani, “Sentiment Analysis on IMDB Movie Reviews using Machine Learning and Deep Learning Algorithms,” in 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Jan. 2022, pp. 814–819, doi: https://doi.org/10.1109/ICSSIT53264.2022.9716550.
S. prabha.K.S and P. N. Karthikayan, “For Movie Reviews, A Sentiment Analysis using Long Short Term Memory Networks,” Turkish J. Comput. Math. Educ., vol. 12, no. 9, pp. 1758–1766, 2021.
R. Ni and H. Cao, “Sentiment Analysis based on GloVe and LSTM-GRU,” in 2020 39th Chinese Control Conference (CCC), Jul. 2020, pp. 7492–7497, doi: https://doi.org/10.23919/CCC50068.2020.9188578.
A. Hassan and A. Mahmood, “Deep Learning approach for sentiment analysis of short texts,” in 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Apr. 2017, pp. 705–710, doi: https://doi.org/10.1109/ICCAR.2017.7942788.
Shaukat Z, Zulfiqar AA, Xiao C, Azeem M, Mahmood T (2020) Sentiment analysis on IMDB using lexicon and neural networks. SN Appl Sci 2(2):148. https://doi.org/10.1007/s42452-019-1926-x
Article
Google Scholar
Mohaiminul M, Sultana N (2018) Comparative Study on Machine Learning Algorithms for Sentiment Classification. Int J Comput Appl 182(21):1–7. https://doi.org/10.5120/ijca2018917961
Article
Google Scholar
N. Mohamed Ali, M. M. A. El Hamid, and A. Youssif, “Sentiment Analysis for Movies Reviews Dataset Using Deep Learning Models,” Int. J. Data Min. Knowl. Manag. Process, vol. 09, no. 03, pp. 19–27, 2019, doi: https://doi.org/10.5121/ijdkp.2019.9302.
W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN for Natural Language Processing,” 2017, [Online]. Available:http://arxiv.org/abs/1702.01923.
A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word vectors for sentiment analysis,” ACL-HLT 2011 - Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang. Technol., vol. 1, pp. 142–150, 2011.
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations ofwords and phrases and their compositionality,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2013.
Li D, Du L (2022) Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish. Artif Intell Rev 55(5):4077–4116. https://doi.org/10.1007/s10462-021-10102-3
Article
Google Scholar
Q. Yao, D. D.-C. Lu, and G. Lei, “A Surface Temperature Estimation Method for Lithium-ion Battery Using Enhanced GRU-RNN,” IEEE Trans. Transp. Electrif., pp. 1–1, 2022, doi: https://doi.org/10.1109/TTE.2022.3197927.
Ni Q, Cao X (2022) MBGAN: An improved generative adversarial network with multi-head self-attention and bidirectional RNN for time series imputation. Eng Appl Artif Intell 115:105232. https://doi.org/10.1016/j.engappai.2022.105232
Article
Google Scholar
Canli H, Toklu S (2021) Deep Learning-Based Mobile Application Design for Smart Parking. IEEE Access 9:61171–61183. https://doi.org/10.1109/ACCESS.2021.3074887
Article
Google Scholar
Canlı H, Toklu S (2022) Design and Implementation of a Prediction Approach Using Big Data and Deep Learning Techniques for Parking Occupancy. Arab J Sci Eng 47(2):1955–1970. https://doi.org/10.1007/s13369-021-06125-1
Article
Google Scholar
Yan J, Liu J, Yu Y, Xu H (2021) Water Quality Prediction in the Luan River Based on 1-DRCNN and BiGRU Hybrid Neural Network Model. Water 13(9):1273. https://doi.org/10.3390/w13091273
Article
Google Scholar
Nguyen VQ, Anh TN, Yang H-J (2019) Real-time event detection using recurrent neural network in social sensors. Int J Distrib Sens Networks 15(6):155014771985649. https://doi.org/10.1177/1550147719856492
Article
Google Scholar
Casillo F, Deufemia V, Gravino C (2022) Detecting privacy requirements from User Stories with NLP transfer learning models. Inf Softw Technol 146:106853. https://doi.org/10.1016/j.infsof.2022.106853
Article
Google Scholar
A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 2098–2117, 2022, doi: https://doi.org/10.1016/j.jksuci.2022.02.025.
Google LLC, “Colab.” https://colab.research.google.com/. Accessed 20 Sept 2022
Google, “Tensorflow,” 2021. https://tensorflow.org. Accessed 20 Sept 2022
Keras, “Keras.” https://www.keras.io. Accessed 20 Sept 2022
Python, “Python.” https://www.python.org/downloads/. Accessed 20 Sept 2022
RedecuPlatue, “RedecuPlatue.” https://keras.io/api/callbacks/reduce_lr_on_plateau/. Accessed 20 Sept 2022
E. Stopping, “Early Stopping,” https://keras.io/api/callbacks/early_stopping/. Accessed 20 Sept 2022
Ağbulut Ü, Gürel AE, Biçen Y (2021) Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew Sustain Energy Rev 135:110114. https://doi.org/10.1016/j.rser.2020.110114
Article
Google Scholar
D. Q. Nguyen, T. Vu, and S. B. Pham, “Sentiment Classification on Polarity Reviews: An Empirical Study Using Rating-based Features,” in Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2014, pp. 128–135, doi: https://doi.org/10.3115/v1/W14-2621.
V. Narayanan, I. Arora, and A. Bhatia, “Fast and Accurate Sentiment Classification Using an Enhanced Naive Bayes Model,” 2013, pp. 194–201.
J. Camacho-Collados and M. T. Pilehvar, “On the Role of Text Preprocessing in Neural7Network Architectures: An Evaluation Study on Text Categorization and Sentiment Analysis,” in Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018, pp. 40–46, doi: https://doi.org/10.18653/v1/W18-5406.
Zhou ZH, Feng J (2019) Deep forest. Natl Sci Rev 6(1):74–86. https://doi.org/10.1093/nsr/nwy108
Article
MathSciNet
Google Scholar
S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good sentiment and topic classification,” 50th Annu. Meet. Assoc. Comput. Linguist. ACL 2012 - Proc. Conf., vol. 2, no. July, pp. 90–94, 2012.
Ma Y, Fan H, Zhao C (2019) Feature-Based Fusion Adversarial Recurrent Neural Networks for Text Sentiment Classification. IEEE Access 7:132542–132551. https://doi.org/10.1109/ACCESS.2019.2940506
Article
Google Scholar
G. Mesnil, T. Mikolov, M. A. Ranzato, and Y. Bengio, “Ensemble of generative and discriminative techniques for sentiment analysis of movie reviews,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Work. Track Proc., pp. 1–5, 2015.
T. Brychcín and I. Habernal, “Unsupervised improving of sentiment analysis using global target context,” Int. Conf. Recent Adv. Nat. Lang. Process. RANLP, no. September, pp. 122–128, 2013.
W. Xu, H. Sun, C. Deng, and Y. Tan, “Variational Autoencoder for Semi-Supervised Text Classification,” Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, Feb. 2017, doi: https://doi.org/10.1609/aaai.v31i1.10966.
A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to Generate Reviews and Discovering Sentiment,” 2017, [Online]. Available: http://arxiv.org/abs/1704.01444.
Monnet A, Cabadi Y (1978) Automatized Hemagglutination Kinetics. Vox Sang 34(4):227–230. https://doi.org/10.1111/j.1423-0410.1978.tb02472.x
Article
Google Scholar
Johnson R, Zhang T (2015) “Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding,” in Advances in Neural Information Processing Systems, vol 28. Available: https://proceedings.neurips.cc/paper/2015/file/acc3e0404646c57502b480dc052c4fe1-Paper.pdf. Accessed 1 Oct 2022
A. B. Dieng, J. Gao, C. Wang, and J. Paisley, “TopicRNN: A recurrent neural network with long-range semantic dependency,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–13, 2017.
R. Johnson and T. Zhang, “Supervised and semi-supervised text categorization using LSTM for region embeddings,” 33rd Int. Conf. Mach. Learn. ICML 2016, vol. 2, pp. 794–802, 2016.
Gray S, Radford A, Kingma DP (2017) “GPU Kernels for Block-Sparse Weights,” OpenAI 17;1:12. Available: https://blog.openai.com/block-sparse-gpu-kernels. http://www.jneurosci.org/cgi/. https://doi.org/10.1523/JNEUROSCI.1088-12.2012. https://github.com/openai/blocksparse. Accessed 1 Oct 2022
Chen T, Xu R, He Y, Wang X (2017) Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Syst Appl 72:221–230. https://doi.org/10.1016/j.eswa.2016.10.065
Article
Google Scholar
Rathor S, Agrawal S (2022) Sense understanding of text conversation using temporal convolution neural network. Multimed Tools Appl 81(7):9897–9914. https://doi.org/10.1007/s11042-022-12090-0
Article
Google Scholar